首页|融合关系层次结构的知识图谱嵌入

融合关系层次结构的知识图谱嵌入

扫码查看
针对目前知识图谱嵌入方法大都侧重于三元组中的实体和关系信息,忽略了三元组之外与关系相关的丰富信息,提出一种融合关系层次结构信息的知识图谱嵌入方法CompGCN-RHS。在关系表示中融入关系的层次结构信息,将实体和关系联合进行嵌入学习,通过在聚合邻居节点信息时引入注意力机制来学习不同邻居节点对于中心节点的不同贡献。在数据集Sport上该方法的MRR、Hits@1 分别提升 2。2 百分点和 2。3 百分点;在Location上分别提升了4。7 百分点和6 百分点,实验结果验证了该方法的有效性。
KNOWLEDGE GRAPH EMBEDDING METHOD WITH RELATION HIERERCHICAL STRUCTURE
Aimed at the current knowledge graph embedding methods that mostly focus on the entity and relationship information in the triples,thus ignoring the rich information related to the relationships other than the triples,a knowledge graph embedding method,CompGCN-RHS,fused with relational hierarchical structure information is proposed.The hierarchical structure information of the relationship was incorporated into the representation of the relationship,the entity and the relationship were combined for embedded learning,and the attention mechanism was introduced to learn the different contributions of different neighbor nodes to the central node when the neighbor node information was aggregated.On the data set Sport,the MRR and Hits@1 of this method were increased by 2.2 percentage points and 2.3 percentage points respectively;on the Location,they are increased by 4.7 percentage points and 6 percentage points respectively.The experimental results verified the effectiveness of the method.

Knowledge graphGraph convolutional networkKnowledge graph embeddingLink prediction

许智宏、谭金鸽、王利琴、董永峰

展开 >

河北工业大学人工智能与数据科学学院 天津 300401

河北工业大学河北省大数据计算重点实验室 天津 300401

知识图谱 图卷积神经网络 知识图谱嵌入 链接预测

国家自然科学基金青年科学基金项目天津市自然科学基金重点项目

6190210619JCZDJC40000

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(2)
  • 1