首页|基于Partial New Causality的因果脑网络情绪识别

基于Partial New Causality的因果脑网络情绪识别

扫码查看
为了研究情绪产生过程中脑区以及通道之间的因果作用,在部分格兰杰与新型因果关系的基础上,提出一种用于研究时间序列之间因果关系的部分新型因果关系(PNC)方法。在不同情绪下选取脑区内的 8 个通道,用PNC计算脑区内通道之间的因果连接关系,根据连接关系构建因果网络;对因果网络中节点的信息流向和介数属性进行分析,将PNC因果网络和Granger因果网络节点之间的因果连接视为一种特征送入SVM中训练分类。实验结果表明,基于PNC因果网络和Granger因果网络的平均识别精度分别为 76。4%和 68。5%,PNC可用于计算时间序列之间的因果关系。
CAUSAL BRAIN NETWORK EMOTION RECOGNITION BASED ON PARTIAL NEW CAUSALITY
In order to study the causal effects between brain regions and channels in the process of emotion generation,based on the partial Granger and new causality,a partial new causality(PNC)method for studying causality between time series is proposed.8 channels in the brain were selected under different emotions,PNC was used to calculate the causal connection between the channels in the brain,and a causal network was built based on the connection.The information flow and betweenness attributes of the nodes in the causal network were analyzed.The causal connection between the PNC causal network and the Granger causal network was regarded as a feature and sent to the SVM for training classification.The experimental results show that the average recognition accuracy based on the PNC causal network and the Granger causal network are 76.4%and 68.5%,respectively,PNC can be applied to calculate the causal relationship between time series.

PNCElectroencephalogramCausal brain networkBrain regionNetwork attribute analysisEmotion recognition

王斌、王忠民、张荣

展开 >

西安邮电大学 陕西 西安 710121

陕西省网络数据分析与智能处理重点实验室 陕西 西安 710121

部分新型因果关系 脑电 因果脑网络 脑区 网络属性分析 情绪识别

国家自然科学基金项目陕西省工业攻关计划项目陕西省教育厅专项科学研究计划项目咸阳市科学技术研究计划项目

613731162018GY-01318JK06972017k01-25-2

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(2)
  • 1