首页|融合光流特征和显著性检测的目标跟踪算法

融合光流特征和显著性检测的目标跟踪算法

扫码查看
传统的核相关滤波(Kernel Correlation Filter,KCF)算法使用HOG特征来获取目标信息,对非刚体目标不鲁棒,容易出现目标跟踪漂移现象。提出一种融合光流特征和显著性检测的目标跟踪算法抑制跟踪的漂移。算法通过在多通道特征表达时融入光流特征,增加运动目标的位置、姿态的变化信息。同时,通过显著性检测位置对漂移目标进行重检测调节,抑制跟踪漂移,提高跟踪的准确性。实验结果表明,该算法在复杂场景中仍可以进行鲁棒的视觉目标跟踪。
TARGET TRACKING ALGORITHM COMBINING OPTICAL FLOW FEATURES AND SALIENCY DETECTION
Traditional kernel correlation filter(KCF)algorithm uses HOG features to obtain target information,which is not robust to non-rigid targets and is prone to target tracking drift.This paper proposes a target tracking algorithm that combines optical flow features and saliency detection to suppress tracking drift.The algorithm integrated optical flow features into the expression of multi-channel features to increase the change information of the position and posture of the moving target.At the same time,re-detection and adjustment of drifting targets were performed through the saliency detection position to suppress tracking drift and improve tracking accuracy.Experimental results show that the proposed algorithm can still perform robust visual target tracking in complex scenes.

Target trackingCorrelation filterOptical flow featureVisual salience

徐萌、路稳、方澄、姬菁颖

展开 >

中国民航大学电子信息与自动化学院 天津 300300

目标跟踪 相关滤波 光流特征 视觉显著性

中国民航大学科研启动基金项目中央高校基本科研业务费专项资金项目

2017QD05S3122018C005

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(2)
  • 4