计算机应用与软件2024,Vol.41Issue(2) :195-201.DOI:10.3969/j.issn.1000-386x.2024.02.028

基于CNN的阿尔茨海默病与行为异常型额颞叶痴呆的分类

CLASSIFICATION MODEL AND INTERPRETABILITY FOR ALZHEIMER'S DISEASE AND BEHAVIORAL VARIANT OF FRONTOTEMPORAL DEMENTIA BASED ON CNN

俞元琳 杨剑 王志江 王华丽
计算机应用与软件2024,Vol.41Issue(2) :195-201.DOI:10.3969/j.issn.1000-386x.2024.02.028

基于CNN的阿尔茨海默病与行为异常型额颞叶痴呆的分类

CLASSIFICATION MODEL AND INTERPRETABILITY FOR ALZHEIMER'S DISEASE AND BEHAVIORAL VARIANT OF FRONTOTEMPORAL DEMENTIA BASED ON CNN

俞元琳 1杨剑 1王志江 2王华丽2
扫码查看

作者信息

  • 1. 北京工业大学信息学部 北京 100124;脑信息智慧服务北京市国际科技合作基地 北京 100124
  • 2. 北京大学精神卫生研究所(第六医院)北京 100191;国家精神心理疾病临床医学研究中心 北京 100191
  • 折叠

摘要

提出一种基于改进的一维卷积神经网络(1 D-ICNN)的阿尔茨海默病与异常型额颞叶痴呆诊断模型,对卷积层的输出进行下采样的最大池化操作和特征压缩的全局平均池化操作.该模型在 47 例阿尔茨海默病和39 例行为异常型额颞叶痴呆患者脑结构磁共振数据上的分类精度为 86.63%,优于传统机器学习模型和一般深度学习模型.此外,采用SHAP可解释方法对模型的预测结果进行解释,并对解释结果进行可视化.

Abstract

An improved one-dimensional convolutional neural network(1 D-ICNN)model is proposed to diagnose Alzheimer's disease and abnormal frontotemporal dementia.In the model,the output of convolution layer was down sampled and the global average pooling of feature compression was performed.The classification accuracy of this model on brain structure MRI data of 47 patients with Alzheimer's disease and 39 patients with behavioral disorder frontotemporal dementia was 86.63%,which was better than traditional machine learning model and traditional deep learning model.In addition,the SHAP interpretable method was used to interpret the prediction results of the model,and the interpretation results were visualized.

关键词

卷积神经网络/疾病分类/模型可解释性

Key words

Convolutional neural network(CNN)/Disease classification/Model interpretability

引用本文复制引用

出版年

2024
计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
参考文献量3
段落导航相关论文