计算机应用与软件2024,Vol.41Issue(2) :222-228.DOI:10.3969/j.issn.1000-386x.2024.02.032

声波测井成像图中的反射体自动精确识别

AUTOMATIC AND ACCURATE DETECTION OF REFLECTORS IN ACOUSTIC LOGGING IMAGE

李昕 陈晓莹 李珊 庄春喜 李盛清
计算机应用与软件2024,Vol.41Issue(2) :222-228.DOI:10.3969/j.issn.1000-386x.2024.02.032

声波测井成像图中的反射体自动精确识别

AUTOMATIC AND ACCURATE DETECTION OF REFLECTORS IN ACOUSTIC LOGGING IMAGE

李昕 1陈晓莹 1李珊 1庄春喜 2李盛清2
扫码查看

作者信息

  • 1. 中国石油大学(华东)计算机科学与技术学院 山东 青岛 266580
  • 2. 中国石油大学(华东)地球科学与技术学院 山东 青岛 266580
  • 折叠

摘要

针对声波测井成像图噪声多、图像模糊导致的反射体自动识别困难、依赖专家识别、费时耗力等问题,提出反射体自动识别方法.通过高斯混合模型将像素点按颜色进行聚类,拆分为多通道子图,筛选有效子图进行组合;基于局部连通性进行粗降噪;以连通区域内像素点数量为基准进行精细降噪,最终完成反射体区域的像素级精确识别.整个过程完全自动化,在油田开发所用声波成像图上进行实验,实现反射体区域像素级精确识别,极大地提高了开发效率.

Abstract

The acoustic logging images are quite blurry with a lot of noise,which makes the automatic detection of reflectors difficult.It is time-consuming and labor-consuming to rely on expert recognition.Therefore,a completely automatic detection process is proposed.Each pixel in the logging images was solely split into one color cluster through the Gaussian mixture model to build multi-channel sub-images.The sub-images including reflectors were combined together.The coarse noise reduction was performed based on local connectivity,and the fine noise reduction was performed based on the number of pixels in the connected area.The accurate pixel-level detection of the reflector area was completed.The entire process was fully automated.Experiments were performed on the acoustic logging images used in oil-field development.This method achieved accurate pixel-level detection of the reflector area,which greatly improved development efficiency.

关键词

测井/声波成像图/反射体/高斯混合模型/自动识别/精确识别

Key words

Well logging/Acoustic logging image/Reflector/Gaussian mixture model/Automatic detection/Accurate detection

引用本文复制引用

基金项目

中石油重大科技项目(ZD2019-183-004)

中央高校基本科研业务费专项资金项目(20CX05019A)

出版年

2024
计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
参考文献量6
段落导航相关论文