计算机应用与软件2024,Vol.41Issue(2) :250-256.DOI:10.3969/j.issn.1000-386x.2024.02.036

考虑策略型消费者的高斯过程回归动态定价算法

A GAUSSIAN PROCESS REGRESSION DYNAMIC PRICING ALGORITHM CONSIDERING STRATEGIC CONSUMERS

毕文杰 陈美芳
计算机应用与软件2024,Vol.41Issue(2) :250-256.DOI:10.3969/j.issn.1000-386x.2024.02.036

考虑策略型消费者的高斯过程回归动态定价算法

A GAUSSIAN PROCESS REGRESSION DYNAMIC PRICING ALGORITHM CONSIDERING STRATEGIC CONSUMERS

毕文杰 1陈美芳1
扫码查看

作者信息

  • 1. 中南大学商学院 湖南 长沙 410000
  • 折叠

摘要

现有需求不确定下的动态定价算法鲜有考虑消费者策略行为的.将零售商的价格决策过程描述为一个多摇臂(Multi-Armed Bandit,MAB)问题,提出一种非参数贝叶斯算法.将高斯过程回归与汤普森抽样算法相结合,并加入策略型消费者购买决策过程,帮助零售商进行价格决策.仿真结果表明,该算法能有效提高零售商收益,收敛速度更快.此外,策略型消费者的存在可以改善需求学习算法的性能,降低由于需求不确定性导致的零售商收益损失.

Abstract

Few dynamic pricing algorithms when facing uncertain demand consider the consumers'strategic behavior.In this paper,the retailer's price decision was described as a multi-armed bandit(MAB)problem,and a non-parametric Bayesian algorithm was proposed.The algorithm combined Gaussian process regression with Thompson sampling algorithm,added strategic consumers'purchasing decision,and helped retailers to make price decisions.Simulation results show that the proposed algorithm can effectively improve retailers'revenue and converge faster.The presence of strategic consumers can improve the performance of the demand learning algorithm and reduce the loss of retailers'revenue due to the uncertainty of demand.

关键词

高斯过程回归/动态定价/策略型消费者/机器学习

Key words

Gaussian process regression/Dynamic pricing/Strategic consumer/Machine learning

引用本文复制引用

基金项目

国家自然科学基金重大研究计划项目(91646115)

出版年

2024
计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
被引量1
参考文献量6
段落导航相关论文