首页|考虑策略型消费者的高斯过程回归动态定价算法

考虑策略型消费者的高斯过程回归动态定价算法

扫码查看
现有需求不确定下的动态定价算法鲜有考虑消费者策略行为的.将零售商的价格决策过程描述为一个多摇臂(Multi-Armed Bandit,MAB)问题,提出一种非参数贝叶斯算法.将高斯过程回归与汤普森抽样算法相结合,并加入策略型消费者购买决策过程,帮助零售商进行价格决策.仿真结果表明,该算法能有效提高零售商收益,收敛速度更快.此外,策略型消费者的存在可以改善需求学习算法的性能,降低由于需求不确定性导致的零售商收益损失.
A GAUSSIAN PROCESS REGRESSION DYNAMIC PRICING ALGORITHM CONSIDERING STRATEGIC CONSUMERS
Few dynamic pricing algorithms when facing uncertain demand consider the consumers'strategic behavior.In this paper,the retailer's price decision was described as a multi-armed bandit(MAB)problem,and a non-parametric Bayesian algorithm was proposed.The algorithm combined Gaussian process regression with Thompson sampling algorithm,added strategic consumers'purchasing decision,and helped retailers to make price decisions.Simulation results show that the proposed algorithm can effectively improve retailers'revenue and converge faster.The presence of strategic consumers can improve the performance of the demand learning algorithm and reduce the loss of retailers'revenue due to the uncertainty of demand.

Gaussian process regressionDynamic pricingStrategic consumerMachine learning

毕文杰、陈美芳

展开 >

中南大学商学院 湖南 长沙 410000

高斯过程回归 动态定价 策略型消费者 机器学习

国家自然科学基金重大研究计划项目

91646115

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(2)
  • 1
  • 6