首页|最近邻子空间保持的特征提取方法

最近邻子空间保持的特征提取方法

扫码查看
针对流形学习方法定义的局部存在置信度不足的问题,通过保持局部的内部关系和空间关系来捕捉数据的低维流形,提出一种最近邻子空间保持的特征提取方法。将数据中的每个样本点及其K个近邻视为一个局部,进而张成一个最近邻子空间;利用格拉姆行列式对所有最近邻子空间的体积进行度量;对体积做归一化处理,并集成到局部保持投影算法的模型中。在真实数据上的聚类和分类实验结果表明该方法提取的特征更具鉴别能力。
NEAREST SUBSPACE PRESERVING FOR FEATURE EXTRACTION METHOD
To solve the problem of insufficient local confidence in the definition of manifold learning method,by maintaining local internal and spatial relationships to capture low dimensional manifolds of data,we propose a feature extraction method based on the nearest subspace preserving.Every sample point and its K nearest neighbors in the data were treated as a locality,and a nearest subspace was stretched.The Gram determinant was used to measure the volume of all the nearest subspaces.The volume was normalized and integrated into the model of the locality preserving projections algorithm.The experimental results of clustering and classification on real data prove that the features extracted by our approach are more discriminative.

Manifold learningFeature extractionNearest subspaceLocality preserving projections

徐剑豪、胡文军、王哲昀、胡天杰

展开 >

湖州师范学院信息工程学院 浙江 湖州 313000

浙江省现代农业资源智慧管理与应用研究重点实验室 浙江 湖州 313000

流形学习 特征提取 最近邻子空间 局部保持投影

国家自然科学基金项目

61772198

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(2)
  • 7