首页|基于多特征提取与灰狼算法优化SVM的车内异响识别方法

基于多特征提取与灰狼算法优化SVM的车内异响识别方法

扫码查看
传统的异响识别方法对测试设备要求较高且易受实验员经验差异影响。针对这种情况,提出一种基于多特征提取与灰狼算法优化支持向量机(Support Vector Machine,SVM)的车内异响识别方法。该方法以采集实验获得的6种车内常见异响作为研究对象,提取短时能量、小波变换优化的梅尔频率倒谱系数(DWT-MFCC)及其一阶差分组成混合特征参数,将灰狼优化算法应用于SVM的参数寻优中,建立异响识别模型并进行识别分类,同时探究选用不同维度的特征或不同算法对识别效果的影响。结果表明,所提取的25维混合特征能有效传达异响信息,该方法在收敛速度与识别准确率方面优势明显,能更好地实现车内异响的识别。
VEHICLE INTERIOR ABNORMAL NOISE RECOGNITION BASED ON MUTI-FEATURE EXTRACTION AND SVM OPTIMIZED BY GRAY WOLF OPTIMIZATION
The traditional method of abnormal noise recognition has high requirements for test equipment and can be easily affected by the experience difference of experimenters.In view of this,a method of vehicle interior abnormal noise recognition is proposed based on multi-feature extraction and SVM optimized by gray wolf optimization.This method took 6 kinds of common abnormal noises obtained in the test as the research object,and extracted short-term energy,Mel frequency cepstral coefficient optimized by wavelet transform(DWT-MFCC)and its first-order difference to form mixed characteristic parameters.Gray wolf optimization was applied to the parameter optimization of SVM to establish a noise recognition model and perform recognition classification.Result shows that the 25 dimensional mixed features extracted by this method can effectively convey abnormal noise information,and this method can better identify abnormal noise because of its obvious advantages in convergence speed and effect.

Abnormal noise recognitionShort-term EnergyDWT-MFCCGray wolf optimizationSupport vector machine

王若平、陈严、王东、梁博洋、曾发林

展开 >

江苏大学汽车与交通工程学院 江苏镇江 212013

中汽研(天津)汽车工程研究院有限公司 天津 300300

车内异响识别 短时能量 DWT-MFCC 灰狼优化算法 支持向量机

国家自然科学基金

51575238

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(3)
  • 25