首页|基于GMM-SVM的挤压机能耗异常检测应用

基于GMM-SVM的挤压机能耗异常检测应用

扫码查看
在工业挤压机能耗异常的检测研究中,由于数据特征不够全面和恰当,导致检测精度不高。为此提出一种基于GMM-LDA聚类特征学习和粒子群优化支持向量机(PSO-SVM)方法。使用GMM-LDA聚类特征学习算法对一些数据集进行聚类,得到正常数据和异常数据的最优特征。使用更新模式动态生成最近的正常模式库和异常模式库来提高数据库的自适应能力,使得所提出的方法可以适应网络环境的动态变化,并标记了数据集。基于PSO优化SVM的参数得到最优模型。实验结果分析表明,该检测模型不仅避免了监督训练样本中人工分类的依赖,而且与单个算法或其他算法相比,具有更高的检测精度和更低的误报率。
APPLICATION OF ABNORMAL ENERGY CONSUMPTION DETECTION OF EXTRUDER BASED ON GMM-SVM
In the research of abnormal energy consumption detection of industrial extruder,because the data characteristics are not comprehensive and appropriate,the detection accuracy is not high.Therefore,a method based on GMM-LDA clustering feature learning and particle swarm optimization support vector machine(PSO-SVM)is proposed.GMM-LAD clustering feature learning algorithm was used to cluster some data sets to obtain the optimal features of normal data and abnormal data.The update pattern was used to dynamically generate the nearest normal pattern library and abnormal pattern library to improve the adaptability of the database,so that the proposed method could adapt to the dynamic changes of the network environment and label the data set.The parameters of SVM were optimized based on PSO to obtain the optimal model.Experimental results show that the proposed detection model not only avoids the dependence of manual classification in supervised training samples,but also has higher detection accuracy and lower false alarm rate compared with single algorithm or other algorithms.

Abnormal detectionClustering characteristicsParticle swarm optimizationSupport vector machine

谭超奖、印四华

展开 >

广东工业大学计算机学院 广东广州 510006

广东工业大学机电工程学院 广东广州 510006

异常检测 聚类特征 粒子群 支持向量机

国家自然科学基金-广东省联合基金重点项目

U1501248

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(3)
  • 26