首页|基于EEMD-AE-LSTM的生活用电短期负荷预测

基于EEMD-AE-LSTM的生活用电短期负荷预测

扫码查看
生活用电负荷随机性高,使用单一的预测模型进行预测会造成预测结果精度不高并且预测时间比较长。建立集合经验模态分解(EEMD)-自动编码器(AE)-长短期记忆网络(LSTM)的组合预测模型用来预测生活用电短期负荷。采用EEMD算法将负荷数据分解为有限个本征模态分量(IMF)和一个残差分量,与 自动编码器训练得到的特征序列组合,并建立LSTM模型预测线性加权产生最终预测结果。实验结果表明,相对于其他模型,EEMD-AE-LSTM模型的预测精度更高,是一种较为有效的生活用电短期负荷预测方法。
SHORT-TERM LOAD FORECASTING OF DOMESTIC ELECTRICITY BASED ON EEMD-AE-LSTM
The domestic power load has high randomness,and using a single forecasting model to forecast will result in low accuracy and long prediction time.A combined forecasting model of ensemble empirical mode decomposition(EEMD)-Automatic encoder(AE)-long short-term memory network(LSTM)is established for short-term load forecasting of domestic power consumption.The EEMD algorithm was used to decompose the load data into a finite number of intrinsic mode components(IMF)and a residual component,and then combined with the feature sequences trained by the automatic encoder,and the LSTM model was established to predict the linear weighting to generate the final prediction results.The experimental results show that EEMD-AE-LSTM model is more accurate than other models,and it is an effective short-term load forecasting method for domestic power.

Ensemble empirical mode decompositionShort-term load forecastingAutomatic encoderLong short-term memoryCombined forecasting

张洁莹、石元博

展开 >

辽宁石油化工大学计算机与通信工程学院 辽宁抚顺 113001

集合经验模态分解 短期负荷预测 自动编码器 长短期记忆网络 组合预测

国家自然科学基金

61702247

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(3)
  • 21