首页|基于改进卷积胶囊网络的轴承故障诊断

基于改进卷积胶囊网络的轴承故障诊断

扫码查看
针对轴承工作环境复杂,变工况下诊断性能低等问题,提出一种基于改进卷积胶囊网络的轴承故障诊断方法。采用Inception结构和通道、空间双重注意力模块,代替胶囊网络中的单层卷积核结构,对数据进行多尺度的关键信息的获取。通过胶囊网络结构,构建向量神经元,在动态路由算法的特征传递方式下,结合优化的损失函数,完成故障诊断。在单、变工况下的凯斯西储大学轴承数据集上进行实验,结果分析表明,该方法能有效地进行故障诊断。
BEARING FAULT DIAGNOSIS BASED ON IMPROVED CONVOLUTIONAL CAPSULE NETWORK
Aimed at the problems of complicated bearing working environment and low diagnostic performance under variable working conditions,a bearing fault diagnosis method based on improved convolutional capsule network is proposed.The Inception structure and the channel and space double attention modules were used to replace the single-layer convolution kernel structure in the capsule network,and the multi-scale key information acquisition of data was performed.Through the structure of the capsule network,vector neurons were constructed.Under the feature transfer mode of the dynamic routing algorithm,combined with the optimized loss function,the fault diagnosis was completed.In order to verify the diagnostic effect of the model,experiments were carried out on the bearing data set of Case Western Reserve University under single and variable working conditions.The results analysis show that this method can effectively diagnose faults.

BearingInceptionAttention moduleCapsule networkFault diagnosis

李伟、华亮、王栗

展开 >

南通大学电气工程学院 江苏南通 226019

轴承 Inception 注意力模块 胶囊网络 故障诊断

江苏省"六大人才高峰"高层次人才项目(第十四批)江苏省高等学校自然科学研究重大项目(2019)

XNY-03919KJA350002

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(3)
  • 14