首页|基于补偿标准差的DQN风险调控交易策略

基于补偿标准差的DQN风险调控交易策略

扫码查看
针对传统交易策略无法在复杂的市场条件下取得稳定收益的问题,提出基于补偿标准差的DQN风险调控交易策略。通过融合历史行情和技术指标数据,采用卷积神经网络提取数据特征,判断交易信号,并利用累积补偿标准差计算具有风险调控作用的奖励函数,有效地提升策略的自适应能力。该策略对沪深300指数2015年至2019年进行交易实验,在2019年测试阶段,策略年收益达到16。13%,胜率为54。62%,夏普比率为15。91%。
DQN RISK CONTROL TRADING STRATEGY BASED ON COMPENSATION STANDARD DEVIATION
Aimed at the problem that traditional trading strategies cannot obtain stable returns under complex market conditions,a DQN risk control trading strategy based on compensation standard deviation is proposed.By fusing historical market data and technical indicator data,using convolutional neural network to extract data features,judging transaction signals,and using the cumulative compensation standard deviation to calculate the reward function with risk regulation,we effectively improved the adaptive ability of the strategy.This strategy conducted trading experiments on the Shanghai and Shenzhen 300 Index from 2015 to 2019.In the 2019 test phase,the strategy's annual return reached 16.13%,the winning rate was 54.62%,and the Sharpe ratio was 15.91%.

AgentDQNCumulative compensationQuantitative tradingFutures market

符甲鑫、刘磊

展开 >

河海大学 江苏南京 211100

智能体 DQN 累计补偿 定量交易 期货市场

国家自然科学基金

61773152

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(3)
  • 13