首页|基于动作发现与边界预测的时序动作定位

基于动作发现与边界预测的时序动作定位

扫码查看
时序动作定位指寻找视频中不同动作实例的开始与结束时间,即时序边界。现有强化学习方法存在重复搜索视频相同内容以及帧级别输入造成语义信息不足的问题,为此提出基于动作发现与边界预测的时序动作定位方法。将动作发现看作强化学习问题,训练视频被重编码为含多个视频单元的序列作为环境(Environ-ment),含记忆模块的智能体(Agent)与具有动作实例移除机制的环境进行交互,进而学会观察视频单元跳过背景而找到动作实例所在单元;将边界预测转化为回归问题,边界预测网络根据智能体发现的视频单元预测对应动作实例的时序边界。实验结果表明,该方法在THUMOS-14上的mAP@0。5相比最新强化学习方法提高6。6%,证实了该方法的优越性能。
ACTION SPOTTING AND BOUNDARY PREDICTION FOR TEMPORAL ACTION LOCALIZATION
Temporal action localization aims to find the start and the end time(i.e.,temporal boundary)of different action instances in videos.Existing reinforcement learning methods have two drawbacks:1)these methods repeatedly search the same content of video;2)frame-level input incurs insufficient semantic information.Therefore,this paper proposes a novel temporal action localization method using action spotting and boundary prediction(ASBP).Action spotting was regarded as a reinforcement learning problem,for which training video was re-encoded into a sequence consisting of multiple video units as Environment,and the Agents containing memory modules interacted with the environment where there existed action instance removing mechanism.By this means,these agents would learn how to skip background via observing video units and identify those units involving action instance.On the other hand,the boundary prediction was treated as a regression problem,where boundary prediction network directly predicted the temporal boundary of action instance according to the video units discovered by agents.Experimental results on THUMOS-14 show that the proposed method improves the mAP@0.5 metric by 6.6%over the state-of-the-art reinforcement learning methods,which well validates its superiority.

Temporal action localizationAction spottingBoundary predictionAgentReinforcement learning

陈乐聪、李平、曹佳晨

展开 >

杭州电子科技大学计算机学院 浙江杭州 310018

时序动作定位 动作发现 边界预测 智能体 强化学习

国家自然科学基金国家自然科学基金浙江省自然科学基金CAD&CG国家重点实验室开放基金

6187212261502131LY18F020015A1802

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(3)
  • 32