计算机应用与软件2024,Vol.41Issue(3) :169-173,225.DOI:10.3969/j.issn.1000-386x.2024.03.026

基于Transformer的短时交通流时空预测

SHORT TERM TRAFFIC FLOW FORECASTING BASED ON TRASNSFORMER

杨国亮 习浩 龚家仁 温钧林
计算机应用与软件2024,Vol.41Issue(3) :169-173,225.DOI:10.3969/j.issn.1000-386x.2024.03.026

基于Transformer的短时交通流时空预测

SHORT TERM TRAFFIC FLOW FORECASTING BASED ON TRASNSFORMER

杨国亮 1习浩 1龚家仁 1温钧林1
扫码查看

作者信息

  • 1. 江西理工大学电气工程与自动化学院 江西赣州 341000
  • 折叠

摘要

现有的交通流预测模型未能全面获取路网的空间依赖,忽略了周期性对交通流量的影响,且缺乏对全局时间依赖的建模能力.针对以上问题,提出一种结合Transformer的动态扩散卷积门控循环单元预测模型.该模型利用动态扩散卷积网络和门控循环单元对交通流的近期、日周期和周周期三个时间进行时空建模;使用Transformer层获取全局时间依赖关系;将各组件输出进行加权融合,生成预测结果.实验结果表明,该方法相较基准模型能有效降低预测误差,准确预测交通演化态势.

Abstract

Existing traffic flow prediction models fail to fully obtain the spatial dependence of the road network,ignore the influence of periodicity to traffic data,and lack the ability to model global time dependence.To solve the above problems,a dynamic diffusion convolution and a gated recurrent unit prediction model combined with Transformer is proposed.The dynamic diffusion convolutional networks and gated recurrent unit were used to model the near-term,daily cycle and weekly cycle time of traffic flow.The Transformer layer was used to obtain the global time dependency.The output of each component was weighted and fused to generate the prediction result.The experimental results show that compared with the benchmark model,this method can effectively reduce the prediction error and accurately predict the traffic evolution situation.

关键词

短时交通流预测/扩散卷积/门控循环单元/Transformer

Key words

Short-term traffic flow prediction/Diffusion convolution/Gated recurrent unit/Transformer

引用本文复制引用

基金项目

国家自然科学基金(51365017)

江西省教育厅科技项目(GJJ190450)

出版年

2024
计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
参考文献量15
段落导航相关论文