首页|注意力机制和多元损失改进的行人重识别模型

注意力机制和多元损失改进的行人重识别模型

扫码查看
行人重识别(Pedestrian Re-identification,Re-ID)侧重在跨域摄像机照片中判断特定行人,目前的行人重识别算法大多研究使得特征提取能力增强的方法,出现了各种不同的模型,但其都存在模型复杂度较高或识别能力弱等问题。针对这些问题,将BagTricks这一简洁的Re-ID基准模型与通道注意机制相结合,提高了模型对显著特征的提取能力,同时加入了环形损失Circle loss,改进了损失函数。实验结果表明,在主流图片行人重识别Market1501数据集上,所提模型达到了 95。6%的rank-1准确率和88。5%的mAP精度,在DukeMTMC数据集和CUHK03数据集中,rank-1则分别达到了 89。1%和76。7%。该方法提高了模型精度,且易于实现,取得了有竞争力的性能,优于大部分现有方法。
IMPROVED PEDESTRIAN RE-IDENTIFICATION MODEL WITH ATTENTION MECHANISM AND MULTIPLE LOSS
Pedestrian Re-identification(RE-ID)concentrates on identifying specific pedestrians in cross-domain cameras.At present,most RE-ID algorithms study methods that enhance feature extraction ability,and various models appear,but they all have problems such as high model complexity or weak recognition ability.To solve these problems,BagTricks,a concise Re-ID benchmark model,was combined with channel attention mechanism to improve the ability of the model to extract significant features.Meanwhile,Circle loss was added to improve the loss function.Experiments on three popular Re-ID dataset show that this model obtains rank-1 accuracy of 95.6%and mAP of 88.5%on the mainstream image re-identification Market1501 dataset,and achieves the rank-1 accuracy of 89.1%and 76.7%on DukeMTMC and CUKE03 dataset.This method improves the accuracy of the model,and is easy to implement,and achieves competitive performance,which is better than most existing methods.

Pedestrian re-identificationDeep neural networkAttention mechanismMultiple loss function

柯健宇、王晓峰

展开 >

上海海事大学信息工程学院 上海 201306

行人重识别 深度神经网络 注意力机制 多元损失函数

国家自然科学基金

61872231

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(3)
  • 33