首页|基于几何矩特征与纹理度量的图像匹配算法

基于几何矩特征与纹理度量的图像匹配算法

扫码查看
为提高多种几何内容变化下的特征点匹配准确度,引入双边滤波器,设计了几何矩特征耦合纹理度量的图像匹配算法。引入双边滤波器,对图像进行预处理,以去除图像中噪声,接着利用Hessian算子,准确检测图像特征。利用图像灰度信息,计算图像特征圆域内的几何矩,以形成鲁棒性较强的特征向量。通过平均梯度模型,对特征点邻域的纹理特征进行度量,并将其联合欧氏测量结果,对图像特征实施匹配。借助互相关模型,对匹配特征的相关程度进行测量,以检测特征点的匹配正确性,优化特征匹配结果。实验数据表明:较当前特征匹配方法而言,在多种几何内容变化下,所提技术具有更高的匹配准确度与鲁棒性。
IMAGE MATCHING METHOD BASED ON GEOMETRIC MOMENT FEATURE COUPLED WITH TEXTURE MEASUREMENT
In order to improve the matching accuracy of feature points under the variety of geometric contents,based on the introduction of bilateral filtering,this paper designs an image matching algorithm using image geometric moment feature and texture measurement.A bilateral filter was introduced to preprocess the image and filter out the noise contained in the image.Hessian operator was used to detect the image features.By using the gray value of the pixels,the geometric moments in the image feature circle were calculated to form a robust feature vector.The average gradient model was used to measure the texture features in the neighborhood of feature points,and the texture measurement results were combined with the Euclidean measurement results to accurately match the image features.With the help of cross-correlation model,the correlation degree of matching features was measured to detect the matching correctness of feature points and optimize the matching results.Experimental data show that the proposed method has higher matching accuracy and robustness than the current feature matching method under the change of various geometric contents.

Image matchingHessian operatorBilateral filteringGeometric moment featureTexture measurementAverage gradient model

金欣、钟洪

展开 >

赣南师范大学科技学院 江西赣州 341000

赣南师范大学数学与计算机科学学院 江西赣州 341000

图像匹配 Hessian算子 双边滤波 几何矩特征 纹理度量 平均梯度模型

国家自然科学基金江西省教育厅科技支撑计划江西省教育厅科技支撑计划

11661007GJJ181541GJJ191650

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(3)
  • 18