计算机应用与软件2024,Vol.41Issue(3) :233-239.DOI:10.3969/j.issn.1000-386x.2024.03.036

一种基于知识图谱共享信息的推荐模型

A RECOMMENDER MODEL BASED ON KNOWLEDGE GRAPHS SHARING INFORMATION

田鹏 朱瑞 张健 王坤 张俊三
计算机应用与软件2024,Vol.41Issue(3) :233-239.DOI:10.3969/j.issn.1000-386x.2024.03.036

一种基于知识图谱共享信息的推荐模型

A RECOMMENDER MODEL BASED ON KNOWLEDGE GRAPHS SHARING INFORMATION

田鹏 1朱瑞 2张健 1王坤 1张俊三2
扫码查看

作者信息

  • 1. 国家电网山东省电力公司枣庄供电公司 山东枣庄 277000
  • 2. 中国石油大学(华东)计算机科学与技术学院 山东青岛 266580
  • 折叠

摘要

在结合知识图谱的推荐模型中,依赖用户历史行为和知识图谱嵌入得到的向量会丢失部分信息,使向量化表示不准确,且多数模型无法充分建模用户和物品的特征交互.针对上述问题,提出一种基于知识图谱共享信息的推荐模型ISRS.在知识图谱模块中,实体向量的训练需考虑当前三元组(head,relation,tail),即先建模head和relation的关系,再与物品共享信息;通过DeepFM建模用户和物品间的低阶、高阶特征交互.实验表明:该模型与主流推荐模型相比,在CTR预测和Top-K推荐场景下都有更优的表现.

Abstract

In the recommendation model combined with the knowledge graph,the item vector obtained by user history behavior and knowledge graph embedding may lose some information,which makes the item vector representation inaccurate.In addition,most recommendation model cannot fully model the feature interaction between user and item.To solve the above problems,a recommender model based on knowledge graphs sharing information(ISRS)is proposed.In the knowledge graph module,the training of entity vector had to consider the current triad(head,relation,tail),which was modeling the relationship between head vector and relation vector and then sharing information with the item vector.The feature interactions of user and item were extracted by DeepFM layers,and the low-order and high-order interactions were modeled.The experiments demonstrate that ISRS model performs better in CTR prediction and Top-K recommendation,compared with other state-of-the-art methods.

关键词

深度学习/推荐系统/知识图谱/信息共享

Key words

Deep learning/Recommender system/Knowledge graph/Information sharing

引用本文复制引用

基金项目

国家自然科学基金(61673396)

中央高校基本科研业务费专项(20CX05019A)

中国石油科技重大专项(ZD2019-183-004)

出版年

2024
计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
参考文献量26
段落导航相关论文