首页|基于网络流时空序列的加密流量分类

基于网络流时空序列的加密流量分类

扫码查看
流量分类问题对于网络资源管理和安全非常重要。然而用户流量经常被加密处理,为流量分类问题带来极大的挑战。为此,提出一种新型的时间序列特征提取方法,用于解决加密应用程序流量分类问题。该方法通过分析数据包的空序列,提取加密网络流量的关键行为特征,并结合自注意力机制的长短时记忆网络来训练并对流量进行分类。为了评估方法的有效性,在公开网络数据集ISCXVPN2016上进行了详细的实验。结果表明,此方法能够显著提高识别加密应用程序流量的准确性和计算效率。
ENCRYPTED TRAFFIC CLASSIFICATION BASED ON NETWORK FLOW TIME-SPACE SERIES
Traffic classification is very important for network resource management and security.However,user traffic is often encrypted,which brings great challenges to traffic classification.Therefore,we propose a novel time series feature extraction technique to address the encrypted traffic classification problem.We extracted significant attributes of the encrypted network traffic behavior by analyzing the time series of received packets.We used the LSTM combined with attention mechanism to train and classify traffic.To evaluate the efficiency of the proposed method,we carried out intensive experiments on an open network dataset ISCXVPN2016.The experimental results show that the proposed method can significantly improve the performance in identifying encrypted application traffic in terms of accuracy and computation efficiency.

Deep learningEncrypted traffic classificationNeutral network

唐博麟、王晨飞、江帆、张虎、徐李阳、赵文华、王蕾、李晓红

展开 >

国家电网有限公司客户服务中心 天津 300309

天津大学智能与计算学部 天津 300072

深度学习 加密流量识别 神经网络

&&国家自然科学基金面上项目

SGTWAZQT220004061872262

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(3)
  • 24