首页|基于Stacking的DDoS攻击检测方法

基于Stacking的DDoS攻击检测方法

扫码查看
近年来DDoS攻击检测多采用机器学习的方法,Stacking便是其一,现阶段Stacking初级学习器的配置方法多为固定搭配,但由于DDoS攻击的复杂性和动态性,静态的配置策略显得灵活性较差.对此提出QGA-Stacking算法,即利用量子遗传算法(QGA)动态地选取Stacking中评价指标最高的一组学习器组合,从而提高检测模型的准确性和灵活性;提出一组最佳特征集来节省计算成本.经过实验对比,充分证明了 QGA-Stacking算法相较于其他3种主流算法,其检测性能更加显著,最佳特征集的选取也较为合理.
DDOS ATTACK DETECTION METHOD BASED ON STACKING
In recent years,DDoS attack detection has mostly adopted machine learning methods,and Stacking is one of them.The current stacking base-learner configuration method is mostly fixed collocation.Due to the complexity and dynamics of DDoS attacks,static configuration strategy is obviously less flexible.In this regard,the QGA-Stacking algorithm is proposed,which uses quantum genetic algorithm(QGA)to dynamically select a group of learner combinations with the highest evaluation index in Stacking,thereby improving the accuracy and flexibility of the detection model.At the same time,a set of optimal feature sets was proposed to save computational cost.Through experimental comparison,it is fully proved that the QGA-Stacking algorithm has more significant detection performance than the other three mainstream algorithms,and the selection of the best feature set is more reasonable.

Cyberspace securityDDoS attack detectionEnsemble learningStackingQuantum genetic algorithm(QGA)

付国庆、李俭兵、高雨薇

展开 >

重庆邮电大学通信与信息工程学院 重庆 400065

重庆邮电大学通信新技术应用研究中心 重庆 400065

重庆信息设计有限公司 重庆 401121

网络空间安全 DDoS攻击检测 集成学习 Stacking 量子遗传算法

重庆市教委科学技术研究计划

KJQN202000647

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(3)
  • 18