首页|基于改进CNN-LSTM融合的僵尸网络识别方法

基于改进CNN-LSTM融合的僵尸网络识别方法

扫码查看
P2P及fast-flux等技术的出现使僵尸网络隐蔽性大大增强.传统人工提取特征的识别方法愈发困难并且识别精度低.该文设计一种新的基于CNN及LSTM融合网络结构,使用改进激活函数和网络结构的卷积神经网络检测空间特征,并使用长短时记忆网络检测时序特征,将两种特征并联融合用于识别僵尸网络.实验表明,该方法在精度和召回率等方面可满足僵尸网络识别需求.
BOTNET IDENTIFICATION METHOD BASED ON IMPROVED CNN-LSTM FUSION
The emergence of P2P and fast-flux technology makes botnet more covert.The traditional recognition method of feature extraction is more and more difficult,and the recognition accuracy is low.In order to solve the above problems,this paper designs a new fusion network structure based on CNN and LSTM.In this method,convolutional neural network with improved activation function and network structure was used to detect spatial features,and LSTM network was used to detect temporal features.Experimental results show that the method can meet the needs of Botnet identification in terms of accuracy and recall.

BotnetConvolutional Neural Network(CNN)Long and short-term memory(LSTM)Feature parallel fusionActivation function

卢法权、陈丹伟

展开 >

南京邮电大学计算机学院、软件学院、网络空间安全学院 江苏南京 210023

僵尸网络 卷积神经网络 长短时记忆网络 特征并联融合 激活函数

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(3)
  • 23