首页|MEF:基于在线容错的云计算资源调度方法

MEF:基于在线容错的云计算资源调度方法

扫码查看
云计算系统效率的关键是提升资源利用率与性能,系统可靠性的关键是备份组件。针对云环境下任务完成时间最小化、容错成本优化问题,提出一种基于在线容错的云计算资源调度方法。在线容错具有静态、动态的属性。静态容错根据组件可靠性和完成过程可靠性改进LeaderRank算法备份关键组件;动态容错在故障时快速替换故障组件;通过MEF算法实现任务完成时间短、容错成本低的多目标优化。实验表明,与现有容错方法对比,MEF算法不仅降低了容错费用,而且增强了故障时的系统效率。
MEF:CLOUD RESOURCE SCHEDULING METHOD BASED ON ONLINE FAULT TOLERANCE
The key to cloud computing system efficiency is to improve resource utilization and performance,and the key to system reliability is backup components.In order to minimize task completion time and optimize fault-tolerant cost in cloud environment,an online fault-tolerant resource scheduling method for cloud computing is proposed.Online fault tolerance has static and dynamic properties.The LeaderRank algorithm was improved to backup key components according to component reliability and completion process reliability.The dynamic fault tolerance could quickly replace the fault components when the fault occurs.The MEF algorithm was used to achieve the multi-objective optimization with short task completion time and low fault tolerance cost.Experimental results show that compared with the existing fault-tolerant methods,MEF algorithm not only reduces the cost of fault-tolerant,but also enhances the system efficiency.

Cloud computingOnline fault toleranceMulti-objective optimizationResource schedulingCloud component

都繁杰、李静、王亮、夏天

展开 >

南京航空航天大学计算机科学与技术学院 江苏南京 211106

国网上海市电力公司信息通信公司 上海 200000

云计算 在线容错 多目标优化 资源调度 云组件排名

国家电网总部科技项目

SGSHXT00JFJS1900093

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(3)
  • 25