计算机应用与软件2024,Vol.41Issue(4) :142-150.DOI:10.3969/j.issn.1000-386x.2024.04.022

基于U-net-BiLSTM-CRF的心律失常多目标检测

MULTI-TARGET DETECTION METHOD FOR ARRHYTHMIA BASED ON U-NET-BILSTM-CRF

王雨轩 朱俊江 黄浩 濮玉
计算机应用与软件2024,Vol.41Issue(4) :142-150.DOI:10.3969/j.issn.1000-386x.2024.04.022

基于U-net-BiLSTM-CRF的心律失常多目标检测

MULTI-TARGET DETECTION METHOD FOR ARRHYTHMIA BASED ON U-NET-BILSTM-CRF

王雨轩 1朱俊江 1黄浩 1濮玉1
扫码查看

作者信息

  • 1. 中国计量大学机电工程学院 浙江杭州 310018
  • 折叠

摘要

由于卷积滤波尺寸等限制,U-net无法学习到心电(Electrocardiographic,ECG)信号的长时序关联性以及标签间的相关性.对此提出一种基于U-net-BiLSTM-CRF的心律失常多目标检测方法,可同时输出目标心拍所属类型和位置信息.使用U-net学习融合特征,再将其输入到双向长短时记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)中学习长时序依赖特征,最后使用条件随机场(Conditional Random Field,CRF)对标签间的关系建模,优化分类结果.依据ANSI/AAMI EC57:2012的心搏分类标准,对MIT-BIH心律失常数据库中共85 609个心拍记录进行划分,在划分后数据集上的实验结果表明,该方法对心拍分类的准确率达99.11%,特异性为99.76%,灵敏度为97.21%,优于传统U-net在MIT-BIH心律失常数据库上的分类性能.

Abstract

Due to limitations such as the size of the convolution filter,U-net cannot learn the long timing correlation of electrocardiographic(ECG)signals and the correlation between tags.Therefore,this paper proposes a multi-target detection method for arrhythmia based on U-net-BiLSTM-CRF,which can simultaneously output the type and location of the target heartbeat.U-net was used to learn the fusion features.The fusion features were input into the bi-directional long short-term memory(BiLSTM)to learn long time-dependent features.Conditional random field(CRF)was used to model the relationship between tags to optimize the classification results.According to the heartbeat classification standard of ANSI/AAMI EC57:2012,a dataset was built in this paper based on a total of 85 609 heartbeat records in the MIT-BIH arrhythmia database,which was used to verify the proposed method.The results show that the accuracy of this method for heartbeat classification is 99.11%,the specificity is 99.76%,and the sensitivity is 97.21%,all of which are better than the classification performance of traditional U-net on the MIT-BIH arrhythmia database.

关键词

心律失常检测/U-net/双向长短时记忆网络/条件随机场

Key words

Arrhythmia detection/U-net/BiLSTM/CRF

引用本文复制引用

基金项目

国家自然科学基金项目(61801454)

浙江省重点研发计划项目(2020C03074)

出版年

2024
计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
参考文献量20
段落导航相关论文