首页|基于Graph-LSTMs的双重位置感知方面级情感分类

基于Graph-LSTMs的双重位置感知方面级情感分类

扫码查看
目前针对用户评论中方面词项情感分类任务的研究大多忽略了依存句法信息,或并未建立依存句法结构与单词之间的联系。为此,提出一种基于Graph-LSTMs的双重位置感知方面级情感分类方法。通过Graph-LSTMs 学习词项的上下文语境特征;在双向GRU的输入中拼接具有双重位置信息的位置向量,优化句子情感编码;利用注意力机制捕获关键的情感特征,实现分类。在SemEval2014的两个数据集上的实验结果表明,该模型相比几种基线模型在准确率和Macro-F1这两个指标上提升明显。
ASPECT LEVEL SENTIMENT CLASSIFICATION WITH DUAL POSITION AWARENESS BASED ON GRAPH-LSTMS
At present,most of the researches on the aspect term sentiment classification task in user reviews ignore the dependency syntactic information,or do not establish the relationship between dependency syntactic structure and words.Therefore,this paper proposes an aspect level sentiment classification method based on Graph-LSTMs.Graph-LSTMs was used to learn the context features of words.The position vector was spliced with dual position information in the input of bidirectional GRU to optimize the sentence sentiment coding.The attention mechanism was used to capture key sentiment features to achieve classification.The experimental results on two data sets of SemEval2014 show that the accuracy and Macro-F1 of this model are significantly improved compared with several baseline models.

Aspect level sentiment analysisGraph-LSTMsDependency parsingPosition weightAttention mechanism

杨锐、刘永坚、解庆、刘平峰

展开 >

武汉理工大学计算机科学与技术学院 湖北武汉 430070

武汉理工大学经济学院 湖北武汉 430070

方面级情感分析 Graph-LSTMs 依存句法 位置权重 注意力机制

湖北省自然科学基金项目中央高校基本科研业务费项目

2018CFB5642020III008GX

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(4)
  • 23