首页|基于改进归一化互相关配准的口腔头侧序列图像全景图拼接算法

基于改进归一化互相关配准的口腔头侧序列图像全景图拼接算法

扫码查看
在牙科的头颅侧位成像中,使用小视野探测器经过线性扫描获得序列图像。为了得到头侧全景图,设计一种基于改进归一化互相关配准的拼接算法。该文使用高斯混合模型对图像进行分割预处理;将目标区域内的归一化互相关系数作为测度函数,采用基于小波变换的多分辨率策略与粒子群优化算法提高配准精度;对配准后的图像进行图像融合,经过多轮连续拼接得到口腔头侧全景图。实验结果表明,改进后的算法配准误差波动从[-6,8]缩小到[-1,1],配准结果达到亚像素级。主观和客观分析显示,所提算法得到的拼接全景图无拼接缝隙和重影,且质量评价指标为最优。
PANORAMIC STITCHING ALGORITHM OF ORAL LATERAL CEPHALOGRAM SEQUENCE IMAGES BASED ON IMPROVED NORMALIZED CROSS-CORRELATION REGISTRATION
Dental lateral cephalogram imaging is performed by linear scanning with a small field plate detector.In order to obtain the lateral cephalogram panorama,this paper designs a stitching algorithm based on improved normalized cross-correlation registration.Gaussian mixture model was used to segment image preprocessing.The normalized cross-relation value in the region of interest was used as the measure function,and registration accuracy was improved by adopting multi-resolution strategy based on wavelet transform and particle swarm optimization.The image fusion was performed on the registered images,and a panoramic view of the oral cavity head side was obtained after multiple rounds of continuous stitching.The experimental results show that the registration error fluctuation of the improved algorithm is reduced from[-6,8]to[-1,1],and the registration result reaches the sub-pixel level.Subjective and objective analysis shows that the stitched panorama obtained by the proposed algorithm has no stitching gaps and ghosts,and the quality evaluation index is the best.

Lateral cephalogramImage registrationNormalized cross-correlationImage fusion

刘峻源、黎希、沈思婉、李章勇

展开 >

数字医疗装备与系统重庆市工程实验室(重庆邮电大学) 重庆 400065

头颅侧位影像 图像配准 归一化互相关 图像融合

国家自然科学基金项目全新动态DR关键技术研发与产品开发项目

61571070CSTC2017ZDCY-zdyfX0049

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(4)
  • 27