首页|基于N-Unet视网膜血管分割

基于N-Unet视网膜血管分割

扫码查看
针对在现阶段视网膜血管分割过程中存在的分支断裂问题,提出一种非局部Unet的模型Non-local Unet(N-Unet)。N-Unet模型保留了编码器-解码器的对称结构,在编码器阶段引入非局部块,使模型在提取特征的过程中关注非局部信息,能更好地捕捉图像中非相邻像素之间的关系。该模型在公开的DRIVE数据集上进行评估,得到的准确性、敏感性、特异性、曲线下面积分别为0。952 3、0。802 1、0。974 3、0。894 9。实验结果表明,该方法在解决血管分割过程中的分支断裂问题表现良好,具有研究意义。
RETINAL VESSEL SEGMENTATION BASED ON N-UNET
In order to address the problem of vascular branch breakage existing in the process of retinal vessel segmentation at present,a non-local Unet model(N-Unet)is proposed.The model retained the encoder-decoder symmetric structure,and introduced non-local blocks at the encoder stage,which made the model pay attention to non-local information in the process of feature extraction and better capture the relationship between non-adjacent pixels in the image.This model was evaluated on the public dataset DRIVE,and gained 0.952 3 accuracy,0.802 1 sensitivity,0.974 3 specificity,and 0.894 9 AUC,respectively.Experimental results show that this method performs well in solving the problem of branch breakage in the process of blood vessel segmentation,and has research significance.

Unet networkNon-localBlood vessel segmentationMedical image

田红、陈姚节

展开 >

武汉科技大学计算机科学与技术学院 湖北武汉 430065

智能信息处理与实时工业系统湖北省重点实验室 湖北武汉 430065

冶金工业过程国家级虚拟仿真实验教学中心 湖北武汉 430065

Unet网络 Non-local 血管分割 医学图像

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(4)
  • 21