基于N-Unet视网膜血管分割
RETINAL VESSEL SEGMENTATION BASED ON N-UNET
田红 1陈姚节2
作者信息
- 1. 武汉科技大学计算机科学与技术学院 湖北武汉 430065;智能信息处理与实时工业系统湖北省重点实验室 湖北武汉 430065
- 2. 武汉科技大学计算机科学与技术学院 湖北武汉 430065;智能信息处理与实时工业系统湖北省重点实验室 湖北武汉 430065;冶金工业过程国家级虚拟仿真实验教学中心 湖北武汉 430065
- 折叠
摘要
针对在现阶段视网膜血管分割过程中存在的分支断裂问题,提出一种非局部Unet的模型Non-local Unet(N-Unet).N-Unet模型保留了编码器-解码器的对称结构,在编码器阶段引入非局部块,使模型在提取特征的过程中关注非局部信息,能更好地捕捉图像中非相邻像素之间的关系.该模型在公开的DRIVE数据集上进行评估,得到的准确性、敏感性、特异性、曲线下面积分别为0.952 3、0.802 1、0.974 3、0.894 9.实验结果表明,该方法在解决血管分割过程中的分支断裂问题表现良好,具有研究意义.
Abstract
In order to address the problem of vascular branch breakage existing in the process of retinal vessel segmentation at present,a non-local Unet model(N-Unet)is proposed.The model retained the encoder-decoder symmetric structure,and introduced non-local blocks at the encoder stage,which made the model pay attention to non-local information in the process of feature extraction and better capture the relationship between non-adjacent pixels in the image.This model was evaluated on the public dataset DRIVE,and gained 0.952 3 accuracy,0.802 1 sensitivity,0.974 3 specificity,and 0.894 9 AUC,respectively.Experimental results show that this method performs well in solving the problem of branch breakage in the process of blood vessel segmentation,and has research significance.
关键词
Unet网络/Non-local/血管分割/医学图像Key words
Unet network/Non-local/Blood vessel segmentation/Medical image引用本文复制引用
出版年
2024