计算机应用与软件2024,Vol.41Issue(4) :262-274.DOI:10.3969/j.issn.1000-386x.2024.04.040

基于广义鲁棒距离度量的孪生支持向量机分类算法

TWIN SUPPORT VECTOR MACHINE CLASSIFICATION BASED ON GENRALIZED ROBUST DISTANCE METRIC

李耀波 宋旭东 孔翔宇
计算机应用与软件2024,Vol.41Issue(4) :262-274.DOI:10.3969/j.issn.1000-386x.2024.04.040

基于广义鲁棒距离度量的孪生支持向量机分类算法

TWIN SUPPORT VECTOR MACHINE CLASSIFICATION BASED ON GENRALIZED ROBUST DISTANCE METRIC

李耀波 1宋旭东 2孔翔宇3
扫码查看

作者信息

  • 1. 辽宁对外经贸学院信息管理学院 辽宁大连 116052
  • 2. 大连交通大学软件学院 辽宁大连 116028
  • 3. 辽宁对外经贸学院科研处 辽宁大连 116052
  • 折叠

摘要

针对孪生支持向量机处理含离群点效果较差的问题,提出一种基于Laplacian核相关熵的广义鲁棒距离度量分类算法.提出一种有界自适应Lθε损失,在学习过程中可以通过自适应参数θ来选择不同的损失函数;提出一种基于拉普拉斯核的相关熵诱导鲁棒距离度量,并证明该度量的有界性、非凸性、光滑性和逼近性;进一步提出一种自适应鲁棒孪生支持向量机学习算法.在多个数据集上的实验结果表明,该算法对特征噪声和离群点具有良好的鲁棒性.

Abstract

Aimed at the problem that twin support vector machine(TWSVM)has poor performance in dealing with outlier classification,a generalized robust distance measure classification method based on Laplacian kernel correlation entropy is proposed.A bounded adaptive Lθε loss function was proposed.In the learning process,different loss functions could be selected by adaptive parameters θ.A correlation entropy induced robust distance measure based on Laplace kernel was proposed,and its boundedness,non-convexity,smoothness and approximation were proved.An adaptive robust twin support vector machine learning framework was introduced.Experimental results on several data sets show that the proposed method is robust to feature noise and outliers.

关键词

支持向量机/有界性/相关熵/鲁棒性

Key words

Support vector machine/Boundedness/Correlation entropy/Robustness

引用本文复制引用

基金项目

辽宁省自然科学基金项目(2019ZD0105)

出版年

2024
计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
参考文献量14
段落导航相关论文