计算机应用与软件2024,Vol.41Issue(4) :291-296.DOI:10.3969/j.issn.1000-386x.2024.04.043

融合门控注意力机制与双线性特征交互的推荐模型

A RECOMMENDATION MODEL COMBINING GATING ATTENTION MECHANISM AND BILINEAR FEATURE INTERACTION

何昌隆 文斌
计算机应用与软件2024,Vol.41Issue(4) :291-296.DOI:10.3969/j.issn.1000-386x.2024.04.043

融合门控注意力机制与双线性特征交互的推荐模型

A RECOMMENDATION MODEL COMBINING GATING ATTENTION MECHANISM AND BILINEAR FEATURE INTERACTION

何昌隆 1文斌1
扫码查看

作者信息

  • 1. 成都信息工程大学通信工程学院 四川成都 610225
  • 折叠

摘要

为了在影视、书籍等单一类型推荐中准确地表达用户的真实偏好,充分地捕获到推荐数据中的有效特征,研究并提出一种融合门控注意力机制与双线性特征交互的推荐模型.使用融入门控机制的注意力单元来对用户的局部显性偏好建模,使用双线性特征交互层来对用户的长期泛性偏好进行挖掘,以提升深度推荐模型的学习能力.在Amazon(Books)和MovieLens-1 M两个公开数据集中进行实验,实验结果表明所提模型相比于其他推荐模型,推荐效果有一定程度的提升.

Abstract

In order to accurately express the users'true preferences in a single type of recommendation such as movies and books,and fully capture the effective features in the recommendation data,a recommendation model that integrates the gating attention mechanism and bilinear feature interaction is proposed.This model used the attention unit integrated into the gated mechanism to model the user's local explicit preferences and used bilinear feature interaction layer to mine the long-term general preferences of users to improve the learning ability of the deep recommendation model.Experiments were conducted on two public data sets,Amazon(Books)and MovieLens-1M.The experimental results show that the proposed model has a certain degree of improvement in recommendation effect compared with other recommendation models.

关键词

推荐系统/深度学习/注意力机制/双线性函数/多层感知机

Key words

Recommendation system/Deep learning/Attention mechanism/Bilinear function/Multilayer perceptron

引用本文复制引用

出版年

2024
计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
参考文献量18
段落导航相关论文