计算机应用与软件2024,Vol.41Issue(4) :327-332.DOI:10.3969/j.issn.1000-386x.2024.04.048

基于安全态势监测模型的泛在终端种类攻击自动识别研究

AUTOMATIC IDENTIFICATION OF UBIQUITOUS TERMINAL TYPE ATTACKS BASED ON SECURITY SITUATION MONITORING MODEL

韩世海 徐鑫 朱珠
计算机应用与软件2024,Vol.41Issue(4) :327-332.DOI:10.3969/j.issn.1000-386x.2024.04.048

基于安全态势监测模型的泛在终端种类攻击自动识别研究

AUTOMATIC IDENTIFICATION OF UBIQUITOUS TERMINAL TYPE ATTACKS BASED ON SECURITY SITUATION MONITORING MODEL

韩世海 1徐鑫 2朱珠1
扫码查看

作者信息

  • 1. 国网重庆市电力公司电力科学研究院 重庆 401123
  • 2. 重庆大学 重庆 400044
  • 折叠

摘要

以提升泛在终端种类攻击自动识别精度为目的,研究基于安全态势监测模型的泛在终端种类攻击自动识别方法.对初始数据序列实施等时距处理,依照累加数列所表现出的反"S"形摆动特征,通过灰色Verhulst模型确定泛在终端风险值.将支持向量机的参数与分类精度分别作为改进粒子群算法的粒子和目标函数,通过全局搜索过程确定支持向量机的最优参数,构建多分类识别模型,将泛在终端风险值作为输入,利用识别模型自动识别泛在终端攻击类型.实验分析结果显示该方法攻击类型查准率为97.81%,DCP值最高达到0.006 3%.

Abstract

In order to improve the accuracy of automatic identification of ubiquitous terminal type attack,the automatic identification method of ubiquitous terminal type attack based on security situation monitoring model is studied.The initial data sequence was treated with equal time interval.According to the anti-s-shaped swing characteristics of the cumulative sequence,the risk value of the ubiquitous terminal was determined by the grey Verhulst model.The parameters and classification accuracy of support vector machine were regarded as the particle and objective functions of the improved particle swarm optimization respectively.The optimal parameters of support vector machine were determined through the global search process,and the multi-classification recognition model was constructed.The ubiquitous terminal risk value was taken as the input,and the identification model was used to automatically identify the attack types of ubiquitous terminal.The experimental results show that the precision of attack type is 97.81%,and the highest DCP value is 0.006 3%.

关键词

安全态势/泛在终端/种类攻击/自动识别/等时距处理

Key words

Security situation/Ubiquitous terminal/Type attack/Automatic recognition/Equal time interval processing

引用本文复制引用

基金项目

国网重庆市电力公司科技项目(2020渝电科技11)

出版年

2024
计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
参考文献量15
段落导航相关论文