首页|基于深度全卷积提升网络的心电信号降噪

基于深度全卷积提升网络的心电信号降噪

扫码查看
针对传统的降噪方法难以在不丢失心电信号下准确去除复杂噪声问题,提出一种基于深度全卷积提升网络(FCBN)的心电信号降噪方法。该方法利用全卷积网络的局部连接的特性来保留心电信号波形细节信息,通过提升(Boosting)算法堆叠多个FCN网络形成深度神经网络,多级输入原始信号,保留心电信号的深层信息特征,提高整体网络的降噪性能。实验结果表明,该方法与小波阈值法、S变换法、BP神经网络法和卷积自动编码器比较,信噪比提高明显且均方根误差较小,同时可保留更多心电信号的波形形态信息。
ECG SIGNAL DENOISING BASED ON DEEP FULLY CONVOLUTIONAL BOOSTING NETWORK
The traditional method of denoise is difficult to accurately remove the complex noise without losing the ECG signal,an ECG signal denoising method is proposed based on the deep full convolutional Boosting network(FCBN).This method used the characteristics of the local connection of the full convolutional network to retain the detailed information of the ECG signal waveform,and stacked multiple FCN networks through the Boosting algorithm to form a deep neural network.The original signal in multiple stages were inputted,and it retained the deep information of the ECG signal features to improve the denoising performance of the overall network.Experimental results show that compared with wavelet threshold method,S transform method,BPNN method and convolutional autoencoder,this method has obvious improvement in SNR and smaller RMSE,while retaining more ECG signal waveforms morphological information.

ECG signalDenoisingFully convolutional networkBoosting algorithm

杨畅、刘慧妍、刘明

展开 >

河北大学电子信息工程学院河北省数字医疗工程重点实验室 河北保定 071002

心电信号 降噪 全卷积网络 提升算法

国家自然科学基金国家自然科学基金河北省自然科学基金河北省青年拔尖项目

6170313361673158F2018201070BJ2019044

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(5)
  • 26