首页|基于联邦学习的航班延误预测模型

基于联邦学习的航班延误预测模型

扫码查看
针对现有的航班延误预测方法中未考虑多数据源与数据隐私问题,提出一种联邦学习框架,融合逻辑回归的方法,使训练数据可以保留在本地,无须上传共享,在保护数据隐私的前提下对航班延误情况进行预测。同时针对训练过程中会间接泄露信息的问题,采用同态加密技术对传输的参数进行加密操作。实验结果表明,用联邦建模的方法在不共享数据的情况下能达到与传统的方法相似的准确率,为优化民航业务提供了切实可行的方案。
FLIGHT DELAY PREDICTION MODEL BASED ON FEDERATED LEARNING
In view of the fact that the existing flight delay prediction methods do not consider the problems of multiple data sources and data privacy,this paper proposes a federated learning framework,which integrates logistic regression methods,so that the training data can kept locally without uploading and sharing,and the flight delay can be predicted on the premise of protecting data privacy.At the same time,aimed at the problem of indirect information leakage in the training process,homomorphic encryption technology was adopted to encrypt the transmitted parameters.The experimental results show that the federated modeling method can achieve similar accuracy than the traditional method without sharing data,which provides a practical scheme for optimizing civil aviation business.

Flight delayData privacyFederated learningHomomorphic encryption

李国、秦维

展开 >

中国民航大学计算机科学与技术学院 天津 300300

航班延误 数据隐私 联邦学习 同态加密

国家自然科学基金

U2033205

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(5)
  • 28