首页|一种基于图卷积神经网络的网络小贷反欺诈方案

一种基于图卷积神经网络的网络小贷反欺诈方案

扫码查看
针对网络小额贷款团伙欺诈的现象,提出一种基于图卷积神经网络的网络小贷反欺诈方案。根据信贷领域知识自顶向下定义知识图谱,通过电话联系等数据搭建用户关系网络;对数据进行预处理,获取欺诈风险特征;将关系网络的邻接矩阵及特征作为图卷积网络的输入,聚合二阶邻居的特征传播计算未知标签节点的违约概率。实验表明,与DeepWalk模型结合逻辑回归、XGBoost、GBDT分类器相比,该方法在KS值上分别提高0。214、0。168、0。076,提高了正负样本区分度,能够有效识别团伙欺诈。
AN ANTI-FRAUD SCHEME BASED ON GRAPH CONVOLUTIONAL NETWORK FOR NETWORK MICRO-FINANCE
Aiming at the phenomenon of network micro-finance gang fraud,this paper proposes an anti-fraud scheme based on graph convolutional network for network micro-finance.According to the knowledge of credit field,the knowledge graph was defined by the top-down method,and the user network was built by the user call logs.The data was preprocessed to obtain the features of fraud risk.The adjacency matrix and features of the relational network were used as the input of graph convolutional network,and the feature propagation of the second-order neighbors was aggregated to calculate the default probability of the unlabeled node.Experimental results show that compared with the DeepWalk model combined with logistic regression,XGBoost,GBDT classifier,the KS value of our method is improved by 0.214,0.168,0.076 respectively,which distinguishes between positive and negative samples better,and effectively identifies fraud gang.

Graph convolutional networkAnti-fraudNetwork micro-financeKnowledge graph

毛巧儿、刘晓强、李柏岩、蔡立志、胡芸

展开 >

东华大学计算机科学与技术学院 上海 201620

上海市计算机软件评测重点实验室 上海 201112

图神经网络 反欺诈 网络小贷 知识图谱

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(5)
  • 15