首页|基于数据驱动的无监测用户用电模式识别方法

基于数据驱动的无监测用户用电模式识别方法

扫码查看
借助于终端用户侧安装的智能电表能够有效地分析其异常用电行为和用电模式,为填补在过渡期可能存在的用户数据缺失,提出一种基于数据驱动的无监测用户用电模式识别方法。利用装有智能电表用户的典型日负荷曲线历史数据提取典型用电模式;对多时间尺度机器学习模型进行训练来估计用户用电量;采用递归贝叶斯学习和支路电流状态估计残差法,从无监测用户月度电费账单中获得日负荷曲线。采用实际系统的量测数据进行算例验证,仿真结果表明所提出方法能够快速而准确地识别出无监测用户的用电模式。
DATA-DRIVEN UNMONITORED USER ELECTRICITY CONSUMPTION PATTERN RECOGNITION METHOD
Smart meters installed on the end user side can effectively analyze their abnormal power consumption behavior and power consumption patterns.To fill the user data missing that may exist in the transition period,a data-driven unmonitored user power pattern recognition method is proposed.We used the typical daily load curve historical data of users with smart meters to extract the typical power consumption patterns,and trained multi-time sale machine learning models to estimate the monthly consumption of users.The recursive Bayesian learning and branch current state estimation residual method were used to obtain the daily load curve from the monthly electricity bill of the unmonitored user.The simulation results on measurement data from actual systems show that the proposed method can identify the power consumption mode of unmonitored users quickly and accurately.

Electricity consumption pattern recognitionSpectrum clusteringRecursive Bayes learning

李凯、杨大伟、张建业、马崇瑞、李德高、王慧

展开 >

国网新疆电力有限公司信息通信公司 新疆乌鲁木齐 830000

国网新疆电力有限公司 新疆乌鲁木齐 830000

北京中电普华信息技术有限公司 北京 100000

用电模式识别 频谱聚类 递归贝叶斯学习

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(5)
  • 9