首页|低过采样数字调制信号的多尺度一维卷积神经网络解调器

低过采样数字调制信号的多尺度一维卷积神经网络解调器

扫码查看
针对应用深度学习方法对数字调制信号进行解调时过采样要求较高的问题,设计低过采样的多尺度一维卷积神经网络数字解调器。该解调器可以在与传统解调器相同的过采样条件下,对BPSK、4-QAM、8-QAM、16-QAM四种数字调制信号进行解调,并能保证传统解调方法相同的误码性能。仿真结果表明,在高斯和Ray-leigh衰落信道下,给出的数字调制信号解调器可以在保证解调误码性能的同时,减少了对采样倍数的要求,降低了神经网络结构的复杂性。
MULTI-SACLE 1D-CNN DEMODULATOR FOR LOW OVERSAMPLING DIGITAL MODULATION SIGNAL
Aiming at the problem of high oversampling requirements when applying deep learning methods to demodulate of digital modulation signals,this paper designs a multi-scale one-dimensional convolutional neural network digital demodulator with low oversampling.It could demodulate the four digital modulation signals of BPSK,4-QAM,8-QAM,and 16-QAM under the same oversampling conditions as the traditional demodulator,and could ensure the same error performance of the traditional demodulation method.Simulation results show that under Gaussian and Rayleigh fading channels,the provided digital modulation signal demodulator can not only ensure the performance of demodulation error codes,but also reduce the requirement of sampling multiple,and also reduce the complexity of neural network structure.

Low sampling multipleDemodulationMulti-sacle 1D-CNNBPSK and M-QAM

陈显敏、符杰林

展开 >

桂林电子科技大学认知无线电与信息处理教育部重点实验室 广西桂林 541004

低采样倍数 解调 多尺度一维卷积神经网络 BPSK和M-QAM

国家自然科学基金

61761014

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(5)
  • 10