首页|多尺度卷积神经网络的电阻层析成像算法

多尺度卷积神经网络的电阻层析成像算法

扫码查看
针对电阻层析成像(ERT)经典算法(LBP、Landweber等)在复杂流型情况下成像精度低的问题,提出一种基于多尺度卷积神经网络(Multi-scale Convolutional Neural Network,MS-CNN)的电阻层析成像图像重建算法。根据气液两相流流型特点,构建有限元模型得到20 000组包含"边界电压向量-电导率分布"的数据集。在典型卷积神经网络Resnet50和Vgg16的基础上,构建针对ERT图像重建问题的MS-CNN。仿真实验结果表明,与Landweber迭代算法和单尺度卷积神经网络算法相比,MS-CNN算法的ICC分别提升了 0。715和0。023,RIE分别降低了 0。812和0。057。抗噪性测试与静态测试结果表明,MS-CNN算法具有良好的图像重建结果和鲁棒性。
MULTI-SCALE CONVOLUTIONAL NEURAL NETWORK ALGORITHM FOR ELECTRICAL RESISTANCE TOMOGRAPHY
Aimed at the problem of low imaging accuracy of classical algorithms(LBP,Landweber,etc.)for electrical resistance tomography(ERT)in complex flow patterns,an image reconstruction algorithm based on multi-scale convolutional neural network(MS-CNN)for electrical resistance tomography is proposed.According to the characteristics of gas-liquid two-phase flow pattern,a finite element model was built to obtain 20,000 data sets containing"boundary voltage vector-conductivity distribution".On the basis of typical convolutional neural networks Resnet50 and VGG16,MS-CNN for ERT image reconstruction was constructed.The simulation results show that compared with Landweber iterative algorithm and single-scale convolutional neural network algorithm,the ICC of MS-CNN algorithm is improved by 0.715 and 0.023,and the RIE is decreased by 0.812 and 0.057 respectively.The anti-noise test and static test results show that the MS-CNN algorithm has good image reconstruction results and robustness.

Convolutional neural networkMetrologyElectrical resistance tomographyLandweberElectrical conductivity distribution

仝卫国、曾世超、张立峰

展开 >

华北电力大学自动化系 河北保定 071003

卷积神经网络 计量学 电阻层析成像 Landweber 电导率分布

国家自然科学基金

61773160

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(5)
  • 15