首页|基于改进SegNet网络的障碍物检测算法研究

基于改进SegNet网络的障碍物检测算法研究

扫码查看
为了提高自动驾驶车辆的多类障碍物检测的精度,提出一种改进的SegNet神经网络算法。该算法在SegNet网络的基础上结合残差网络和多尺度融合算法,提高分类的准确性。对网络训练策略进行改进,采用 自设置对比度归一化算法、学习率调整算法和类平衡算法提高网络的鲁棒性和收敛速度。通过在不同场景下进行实验,结果表明,相较于SegNet神经网络,改进后的SegNet神经网络的像素平均精度(PPA)从85%提高至97%;平均交并比(MIOU)从76%提升至90%。
OBSTACLE DETECTION ALGORITHM BASED ON IMPROVED SEGNET NETWORK
In order to improve the accuracy of multi-class obstacle detection for autonomous vehicles,an improved SegNet neural network algorithm is proposed.Based on SegNet,the algorithm combined residual network and multi-scale fusion algorithm to improve the accuracy of classification.The self-setting contrast normalization algorithm,learning rate adjustment algorithm and class balance algorithm were used to improve the robustness and convergence speed of the network.Through experiments in different scenes,the results show that compared with SegNet neural network,the per pixel accuracy of the improved SegNet neural network is improved from 85%to 97%,and the mean intersection over union is improved from 76%to 90%.

Autonomous drivingObstacle detectionSegNet networkResidual networkMultiscale fusion algorithm

胡均平、张洪伟、黄强、向思平

展开 >

中南大学机电工程学院 湖南长沙 410006

自动驾驶 障碍物检测 SegNet网络 残差网络 多尺度融合算法

国家自然科学基金湖南省科技型中小企业技术创新基金

5117551812C26214305029

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(5)
  • 12