首页|基于多尺度时间卷积网络的多模态过程故障诊断方法

基于多尺度时间卷积网络的多模态过程故障诊断方法

扫码查看
针对工业过程故障诊断面临的多模态、多尺度等混合特性问题,提出一种基于多尺度时间卷积网络的故障诊断方法.考虑到过程数据的多模态分布特性,采用基于余弦相似度的局部近邻标准化方法处理过程数据以消除多模态特性;针对过程数据的多尺度特性,使用变分模态分解获取数据的多尺度表示,对各分量构建采用注意力机制的时间卷积网络模型提取特征,并融合多尺度特征,以实现多尺度特征提取;在特征提取的基础上使用全连接层实现故障诊断.通过田纳西-伊斯曼(Tennessee-Eastman,TE)过程仿真实验验证了该方法的有效性和可行性.
FAULT DIAGNOSIS BASED ON MULTISCALE TEMPORAL CONVOLUTIONAL NETWORK FOR MULTIMODE INDUSTRIAL PROCESS
Aimed at the problem of industrial process fault diagnosis with the mixed characteristics of multimode and multiscale,a fault diagnosis method based on multiscale temporal convolutional network is proposed.Considering the multimode distribution characteristics of process data,we used the local neighborhood standardization method based on cosine similarity to standardize the process data to eliminate the multimode characteristics.Aimed at the multiscale characteristics of the process data,the multiscale representation of the process data was obtained by variational mode decomposition,a temporal convolutional network model with attention mechanism was constructed for each component to extract features,and the multiscale features were fused to achieve multiscale feature extraction.On the basis of the feature extraction,the fault diagnosis was realized by a full connection layer.The effectiveness and feasibility of the proposed method are verified by Tennessee-Eastman(TE)process simulation experiments.

Fault diagnosisMultimode processTemporal convolutional networkMultiscale feature extractionLocal neighborhood standardization

阳少杰、里鹏、李帅、周晓锋

展开 >

中国科学院网络化控制系统重点实验室 辽宁沈阳 110016

中国科学院沈阳自动化研究所 辽宁沈阳 110016

中国科学院机器人与智能制造创新研究院 辽宁沈阳 110169

中国科学院大学 北京 100049

展开 >

故障诊断 多模态过程 时间卷积网络 多尺度特征提取 局部近邻标准化

辽宁省自然科学基金项目

2019-MS-344

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(6)
  • 8