首页|基于深度学习的眼周识别方法研究

基于深度学习的眼周识别方法研究

扫码查看
为了提高眼周识别性能,提出一种基于深度卷积神经网络的眼周识别方法(PeriocularNet).Periocu-larNet具有16层卷积神经网络,融入了残差学习模块,使用了 ArcFace损失函数;在训练策略上引入数据增强,以解决训练过程中产生的过拟合.在UBIPr、UBIRIS.V2数据集上进行实验,实验结果表明所提方法的识别EER值分别达到1.9%和7.9%,相较于经典的眼周识别方法取得了更好的眼周识别性能.另外,为了验证端到端的眼周识别方法中眉毛区域特征对眼周识别性能的影响,建立两个涉及三种眉毛形态的眼周数据集.通过实验验证,保持眉毛区域特征不变的眼周数据识别EER比其他两种去掉眉毛特征的情况更低,表明眉毛区域特征能够提高眼周识别性能.
PERIOCULAR RECOGNITION APPROACH BASED ON DEEP LEARNING
In order to improve the performance of periocular recognition,a new method based on deep convolutional neural networks referred to as PeriocularNet is proposed.PeriocularNet exploited a 16-layer convolutional neural network,integrated with a residual learning module,and adopted the ArcFace loss function.Data augmentation was introduced to avoid the over-fitting in training process.The experiments on UBIPr and UBIRIS.V2 datasets show that the equal error rate(EER)of the proposed approach achieve 1.9%and 7.9%respectively.which improves the periocular recognition performance compared to the related methods.In addition,in order to verify the effect of the eyebrow region feature on the performance of periocular recognition in the end-to-end approach,two periocular datasets,UBIPr-1 and UBIRIS-1,involving three eyebrow shapes were established.Experimental results show that the EER of images containing the eyebrow feature is lower than that of the eyebrow feature removed,which indicates the importance of eyebrow feature in periocular recognition.

Biometric recognitionPeriocular recognitionDeep learningConvolutional neural networkEyebrow area

秦涛、王云龙、孙哲南、周琬婷

展开 >

湖南工业大学计算机学院 湖南株洲 412007

中国科学院自动化研究所模式识别国家重点实验室智能感知与计算研究中心 北京 100190

中国科学院大学人工智能学院 北京 100049

生物特征识别 眼周识别 深度学习 卷积神经网络 眉毛区域

科技部国家重点研发计划项目国家自然科学基金青年科学基金项目国家自然科学基金青年科学基金项目

2017YFC08216026200622562006227

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(6)