首页|结合单列多列神经网络的移动状态人群计数方法研究

结合单列多列神经网络的移动状态人群计数方法研究

扫码查看
已有人群计数方法局限于对人群的全部进行计数,在仅对人群中的移动者进行计数时准确率较低,基于注意力的多阶段深度学习框架被提出以解决这一问题.通过注意力机制适应性地在单列和多列计数网络进行选择,结合单列网络的深层特征表示能力和多列网络多尺度特征学习能力,有效提取人群中移动者的特征.实验结果表明,所提出的方法均方误差(MSE)和平均绝对误差(MAE)皆低于已有人群计数方法,能够有效提高处于移动状态的人群的计数精度.
MOVING CROWD COUNTING BY INTERGRATING SINGLE AND MULTIPLE COLUMN NEURAL NETWORK
Existing crowd counting methods are limited to counting the integrity of the crowd,the accuracy rate is downgraded when exclusively counting the moving people in the crowd.An attention based multi-stage deep learning framework is proposed to solve this problem.Attention module was adopted to adaptively selects both single-column and multi-column counting networks,combine the deep features of single column network and the multiple scale receptive fields of multiple column network,which effectively extracted features of the moving people.The results show that the proposed method has lower mean square error(MSE)and mean absolute error(MAE)than existing crowd counting methods.The counting accuracy of people on moving is well improved.

Crowd countingDeep learningSingle and multiple column networkAttention mechanism

温宇健、郭士杰

展开 >

复旦大学工程与应用技术研究院 上海 200433

复旦大学智能机器人教育部工程研究中心 上海 200433

人群计数 深度学习 单列多列网络 注意力机制

国家重点研发计划项目河北省重点研发计划项目

2016YFE012870018211816D

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(6)