计算机应用与软件2024,Vol.41Issue(6) :237-242,249.DOI:10.3969/j.issn.1000-386x.2024.06.035

基于边界感知的工业设备故障命名实体识别方法

NAMED ENTITY RECOGNITION METHOD FOR INDUSTRIAL EQUIPMENT FAULTS BASED ON BOUNDARY-AWARE

葛卫京 刘晓丽 杜亚峰
计算机应用与软件2024,Vol.41Issue(6) :237-242,249.DOI:10.3969/j.issn.1000-386x.2024.06.035

基于边界感知的工业设备故障命名实体识别方法

NAMED ENTITY RECOGNITION METHOD FOR INDUSTRIAL EQUIPMENT FAULTS BASED ON BOUNDARY-AWARE

葛卫京 1刘晓丽 1杜亚峰1
扫码查看

作者信息

  • 1. 商丘工学院机械工程学院 河南商丘 476000
  • 折叠

摘要

命名实体识别在识别工业设备故障方面发挥关键作用,有助于故障预测、维护管理和智能决策.针对工业设备故障数据中存在的嵌套结构和长跨度问题,提出一种边界感知的实体识别方法.该方法通过边界感知精准定位实体跨距,并结合类别预测判断实体跨距的所属类别,以提高识别性能.此外,为解决标注数据的缺乏的问题,还构建面向工业设备故障的实体识别数据集.实验结果证明了该方法在工业设备故障实体识别方面的有效性,并为后续数据分析和知识图谱的构建提供了坚实基础.

Abstract

Named Entity Recognition plays a key role in identifying industrial equipment faults,aiding in fault prediction,maintenance management,and intelligent decision-making.Aiming at the nested structures and long spans in industrial equipment fault,this paper proposes a boundary-aware entity recognition method.This method accurately located the span of entities through boundary detection and enhanced recognition performance by combining category prediction to determine the entity span's category.To tackle the scarcity of labeled data,this paper constructed an entity recognition dataset targeted at industrial equipment faults.Experimental results demonstrate the effectiveness of this method in recognizing entities related to industrial equipment faults,which lays a solid foundation for subsequent data analysis and knowledge graph construction.

关键词

命名实体识别/预训练语言模型/工业设备/故障信息

Key words

Named entity recognition/Pre-trained language models/Industrial equipment/Fault information

引用本文复制引用

出版年

2024
计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
参考文献量3
段落导航相关论文