计算机应用与软件2024,Vol.41Issue(7) :6-12,48.DOI:10.3969/j.issn.1000-386x.2024.07.002

基于API参数语义分析的安卓应用行为细粒度表征方法

FINE-GRAINED BEHAVIOR REPRESENTATION FOR ANDROID APPLICATIONS BASED ON API PARAMETER SEMANTIC ANALYSIS

贺瑞 张晓寒 张源
计算机应用与软件2024,Vol.41Issue(7) :6-12,48.DOI:10.3969/j.issn.1000-386x.2024.07.002

基于API参数语义分析的安卓应用行为细粒度表征方法

FINE-GRAINED BEHAVIOR REPRESENTATION FOR ANDROID APPLICATIONS BASED ON API PARAMETER SEMANTIC ANALYSIS

贺瑞 1张晓寒 1张源1
扫码查看

作者信息

  • 1. 复旦大学计算机科学技术学院 上海 200438
  • 折叠

摘要

基于API(Application Programming Interface)的行为表征是主流安卓恶意应用检测和分类方法的重要环节.然而,安卓API的笼统化发展导致该表征方法面临粗粒度、无法精确表征应用行为的问题.针对该问题,基于程序分析和自然语言处理技术,提出自动化的方法对API参数进行语义分析,将表征粒度从API提升至其参数,实现对应用行为的细粒度表征.实验结果表明该方法可显著提高安卓应用行为表征的精确性,提升恶意应用检测和分类等任务的效果.

Abstract

API-based behavior representation is currently an important part of mainstream Android malware detection and classification.However,due to the rough development of Android APIs,this method faces the problem of coarse granularity and is unable to precisely describe application behaviors.In response to this problem,an automatic API parameter semantic analysis method is proposed,which is based on program analysis and natural language processing technology.It refined the representation granularity from API to its parameters and realized a fine-grained representation of application behaviors.Experimental results show that this method can significantly improve the precision of Android application behavior representation,and enhance the effectiveness of tasks such as malware detection and classification.

关键词

行为细粒度表征/恶意软件检测/参数语义分析/自然语言处理

Key words

Fine-grained behavior representation/Malware detection/Parameter semantic analysis/Natural language processing

引用本文复制引用

基金项目

国家自然科学基金项目(61972099)

国家自然科学基金项目(U1836210)

国家自然科学基金项目(U1836213)

国家自然科学基金项目(U1736208)

上海市自然科学基金项目(19ZR1404800)

出版年

2024
计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
段落导航相关论文