首页|基于YOLOv3的乳腺X线图像肿块检测方法

基于YOLOv3的乳腺X线图像肿块检测方法

扫码查看
乳腺X线摄影术是目前国际上公认的有效的乳腺癌早期筛查手段。提出一种基于YOLOv3网络的乳腺X线图像肿块检测方法。该方法能够在保证精度的同时,以较快的速度一次完成对整幅图像中肿块的检测。应用迁移学习技术,将由数字化乳腺X线图像学习到的肿块病变检测知识迁移到全域数字图像,有效解决了目前全域数字图像数据集缺乏的问题。使用五折交叉验证方法,在DDSM和INbreast数据集上进行实验验证,最终得到的五折间肿块检测平均准确率为81。34%。
YOLOV3-BASED BREAST MASS DETECTION METHOD IN MAMMOGRAPHY
Mammography is internationally recognized as an effective screening tool for early breast cancer.This paper proposes a mammographic mass detection method based on YOLOv3 network.The method could complete mass detection of the whole image at a faster speed while ensuring accuracy.By applying transfer learning technology,the mass lesion detection knowledge learned from the digitized mammograms were transferred to the full-field digital mammograms,which effectively solved the current lack of full-field digital mammography datasets.The five-fold cross-validation method was used for evaluation based on DDSM and INbreast datasets.Through extensive experiments,the obtained average accuracy of the mass detection over the five folds is 81.34%.

Deep learningYOLOv3MammographyMass detectionTransfer learning

潘以轩、陈智丽、高皓、张辉、夏兴华

展开 >

沈阳建筑大学信息与控制工程学院 辽宁沈阳 110168

深度学习 YOLOv3 乳腺X线图像 肿块检测 迁移学习

国家自然科学基金项目辽宁省自然科学基金项目辽宁省教育厅重点攻关项目

6160232220180550059lnzd201904

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(7)