首页|基于深度神经网络的设备剩余使用寿命预测研究

基于深度神经网络的设备剩余使用寿命预测研究

扫码查看
随着传感器在工业设备上的广泛部署,数据驱动的设备状态预测与健康管理技术逐渐成为工业界和学术界研究的热点。该文针对其中的设备剩余使用寿命预测问题展开研究。利用深度神经网络建立设备剩余使用寿命预测模型的关键步骤,并基于C-MAPSS公开数据集,评价前馈神经网络、卷积神经网络、长短期记忆网络三种典型深度神经网络用于剩余使用寿命预测的性能,实验结果显示考虑时序特征的长短期记忆网络具有显著的性能优势,最后对该方向的发展趋势展开讨论。
REMAINING USEFUL LIFE ESTIMATION BASED ON DEEP NEURAL NETWORKS
With the broad deployment of sensors in industrial equipment,data-driven device state prognostics and health management have received increasing attention from both academia and industry.This paper focused on prognostics of systems'remaining useful life(RUL).Deep neural networks to build the key step of RUL estimation models.We evaluated the RUL estimation performance of the models using three typical deep neural networks,namely,feed-forward neural network(FNN),convolution neural network(CNN),and long and short-term memory(LSTM),based on a benchmark dataset C-MAPSS.The experimental results demonstrate that LSTM considering temporal features have significant performance advantages.The research trends in RUL prediction are discussed.

Remaining useful life estimationDeep neural networksConvolution neural networkLong and short-term memory

王加昌、赖跖、唐雷、田野、刘梦娟

展开 >

中国核动力研究设计院核反应堆系统设计技术重点实验室 四川成都 610213

电子科技大学网络与数据安全四川省重点实验室 四川成都 610054

奇虎360科技有限公司 四川成都 610061

剩余使用寿命预测 深度神经网络 卷积神经网络 长短期记忆网络

国家自然科学基金项目

61202445

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(8)
  • 4