首页|基于模型迁移的跨被试脑电情感分类算法

基于模型迁移的跨被试脑电情感分类算法

扫码查看
脑电情感信号因受试个体的不同存在较大的分布差异,导致分类识别率不高,因此,提出一种基于模型迁移的跨被试脑电情感分类算法。利用选取的源域数据训练得到卷积神经网络的初始模型;通过迭代最近点算法使目标域和源域数据之间的分布相似性最大化;通过微调得到新的卷积神经网络模型对目标域数据进行识别。实验结果表明,该算法实现了不同被试共同使用初始网络模型,极大提高了模型的使用效率;通过基于迭代最近点的域适应算法,使跨被试脑电情感模型迁移的分类精度达到90%以上,为不同被试的脑电情感分类提供了新的思路。
CROSS-SUBJECT EEG EMOTION CLASSIFICATION ALGORITHM BASED ON MODEL TRANSFER
The distribution of EEG emotion signal varies greatly among different subjects,which leads to low classification recognition rate.Therefore,this paper proposes a cross-subject EEG sentiment classification algorithm based on model transfer.The initial model of the convolutional neural network was obtained by training the selected source domain data.The distributed similarity between the target domain and the source domain was maximized by iterative nearest point algorithm.A new convolutional neural network model was obtained by fine-tuning to identify the target domain data.The experimental results show that the proposed algorithm can realize the common use of the initial network model by different subjects,which greatly improves the efficiency of the model.The domain adaptation algorithm based on iterative nearest point makes the classification accuracy of EEG emotion model transfer over 90%,which provides a new idea for EEG emotion classification of different subjects.

EEG emotion signalModel transferIterate the nearest pointDomain adaptive

韩劲、薄华、曹芳

展开 >

上海海事大学信息工程学院 上海 200120

脑电情感信号 模型迁移 迭代最近点 域适应

国家自然科学基金项目

61902239

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(8)
  • 12