首页|基于A-CapsNet的西夏文字识别研究

基于A-CapsNet的西夏文字识别研究

扫码查看
针对西夏文字结构复杂、笔画繁多、类别之间相似度较高以及各类别样本数量分布不均衡等问题,论证了将CapsNet网络架构应用于西夏文识别的可行性和优越性,进而提出A-CapsNet网络,运用AlexNet网络在深层次上对图像信息进行提取的优越性能,来弥补CapsNet高层胶囊所接收的缺失特征信息,从AlexNet模块、Capsule模块进行实验分析,实验结果表明,A-CapsNet网络对西夏文字的识别率可以达到94%,比原始的胶囊网络提高了 3百分点,并且都优于深度学习卷积神经网络,具有很好的适用性,为研究西夏文字做了 一定的贡献。
TANGUT CHARACTER RECOGNITION BASED ON A-CAPSNET
Tangut characters have the characteristics of complex structure,numerous strokes,high similarity between categories,and uneven distribution of samples in each category.In view of these characteristics,we demonstrated the feasibility and superiority of applying the CapsNet network architecture to Tangut text recognition,and the A-CapsNet network was proposed.The superior performance of the AlexNet network to extract image information at a deep level was used to make up for the missing feature information received by the CapsNet high-level capsule.From the experimental analysis of the AlexNet module and the Capsule module,the experimental results show that the proposed A-CapsNet network can achieve 94%recognition rate of Tangut characters,which is 3 percentage points higher than the original capsule network.And A-CapsNet network is better than deep learning convolutional neural network,and it has good applicability.This research has made a certain contribution to the study of Tangut characters.

AlexnetA-CapsnetTangut character recognition

杨丽娟、孟一飞、王葭、毛威、孟斌

展开 >

宁夏大学物理与电子电气工程学院 宁夏银川 750021

中国联合网络通信有限公司郑州分公司 河南郑州 450000

AlexNet A-CapsNet 西夏文字识别

宁夏重点研发计划项目

2020BFG02013

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(8)
  • 7