首页|基于α区域变换的刚性点云配准

基于α区域变换的刚性点云配准

扫码查看
随着近些年3D数据集的丰富,3D刚性点云配准在环境识别、室内重建、外科手术等起着重要的作用。尽管有许多刚性点云配准的研究,但是这些研究无法处理拍摄等产生的局部形变。针对这种情况,提出α区域变换的刚性点云配准问题,通过允许不同区域拥有不同刚性变换来处理点云局部形变。为了解决新提出的问题,设计两阶段刚性点云配准算法RPCA。对于第一阶段,利用最大密度子图改进点对应关系从而求得全局变换。对于第二阶段,设计自适应算法在全局变换后来快速求解α区域变换。大量实验表明两阶段算法将配准误差降低了至少48%。与当前配准性能最好的方法相比,运行时间减少了 86%。
RIGID POINT CLOUD REGISTRATION BASED ON α-REGION TRANSFORMATION
With the enrichment of 3D data sets in recent years,3D rigid point cloud registration plays an important role in environment recognition,indoor reconstruction,and surgical operations.Although there are many researches on rigid point cloud registration,these researches cannot deal with the local deformation caused by shooting.In view of this situation,the problem of rigid point cloud registration for α-region transformation is proposed,which can deal with the local deformation of the point cloud by allowing different regions to have different rigid transformations.In order to solve the newly proposed problem,a two-stage rigid point cloud registration algorithm RPCA was designed.For the first stage,the maximum density sub-graph was used to improve the point correspondence to obtain the global transformation.For the second stage,an adaptive algorithm was designed to quickly solve the α-region transformation based on the global transformation.A large number of experiments show that the two-stage algorithm reduces the registration error by at least 48%.Compared with the current method with the best registration performance,its execution time is reduced by 86%.

3D point cloudPoint cloud registrationRigid transformation

龚绩阳、王晓阳

展开 >

复旦大学计算机科学技术学院 上海 200438

3D点云 点云配准 刚性转换

国家自然科学基金项目国家重点研发计划项目

615721362018YFC0830900

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(8)
  • 2