首页|基于图注意力对抗网络的社会化推荐系统

基于图注意力对抗网络的社会化推荐系统

扫码查看
现有的推荐系统并不能很好地将社会影响力与潜在兴趣进行区分,同时也忽略了社交网络的图结构特征及其变化.针对以上不足,提出基于图注意力对抗网络的社会化推荐系统(GAASR).利用对抗性网络将社会影响力和潜在兴趣进行分离;使用Hadamard投影的方法,获得上下文权重值;利用图注意力网络来学习社交嵌入的潜在向量,更精准地捕捉用户的社会结构.为了验证该推荐系统的性能,使用三个推荐系统数据集进行分析实验,实验结果表明GAASR优于目前流行的推荐方法,能够有效地提高推荐的准确率.
SOCIAL RECOMMENDATION SYSTEM BASED ON GRAPH ATTENTION ADVERSARIAL NETWORK
Existing recommendation systems cannot distinguish social influence from potential interest well,and ignore the graph structure characteristics and changes of social networks.In view of the above deficiencies,a social recommendation system based on graph attention adversarial network(GAASR)is proposed.Social influence and potential interest were separated by adversarial network.Hadamard projection method was used to obtain the values of context weight.The graph attention network was used to learn the potential vector of social embedding and capture the social structure of users more accurately.In order to verify the performance of the recommendation system,three recommendation system data sets were used for analysis experiments.The experimental results show that GAASR is better than currently popular recommendation methods,which can effectively improve the recommendation accuracy.

Recommendation systemGenerative adversarial networkGraph attention networkSocial network

夏忠秀、张维玉、翁自强、郭新超

展开 >

齐鲁工业大学(山东省科学院)计算机科学与技术学院 山东济南 250353

推荐系统 生成对抗网络 图注意力网络 社交网络

国家重点研发计划项目国家自然科学基金项目山东省自然科学基金项目

2018YFC083170461502259ZR2017MF056

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(8)
  • 2