计算机应用与软件2024,Vol.41Issue(8) :319-325.DOI:10.3969/j.issn.1000-386x.2024.08.046

基于scSE非局部双流ResNet网络的行为识别

ACTION RECOGNITION ALGORITHM FOR NON-LOCAL TWO-STREAM RESNET NETWORK BASED ON SCSE FUSION

李占利 王佳莹 靳红梅 李洪安
计算机应用与软件2024,Vol.41Issue(8) :319-325.DOI:10.3969/j.issn.1000-386x.2024.08.046

基于scSE非局部双流ResNet网络的行为识别

ACTION RECOGNITION ALGORITHM FOR NON-LOCAL TWO-STREAM RESNET NETWORK BASED ON SCSE FUSION

李占利 1王佳莹 1靳红梅 1李洪安1
扫码查看

作者信息

  • 1. 西安科技大学计算机科学与技术学院 陕西西安 710600
  • 折叠

摘要

针对双流网络对包含冗余信息的视频帧存在识别率低的问题,在双流网络的基础上引入scSE(Spatial and Channel Squeeze & Excitation Block)和非局部操作,构建SC_NLResNet行为识别框架.该框架将视频划分为等分不重叠的时序段并在每段上稀疏采样,提取RGB帧以及光流图作为scSE模块的输入;将经过scSE处理的特征输入非局部双流ResNet网络中,融合各分段得到最终的预测结果.在UCF101以及Hmdb51数据集上实验准确率分别达到96.9%和76.2%,结果表明,非局部操作与scSE模块结合可以增强特征时空上以及通道间的信息提高准确率,验证了 SC_NLResNet网络的有效性.

Abstract

Aimed at the problem of low recognition rate of video frames containing redundant information in dual-stream network,scSE(Spatial and Channel Squeeze & Excitation Block)and non-local operation are introduced based on two-stream network to construct SC_NLResNet behavior recognition framework.In this framework,the framework divided the video into equal and non-overlapping temporal segments and sparsely sampled each segment,extracting RGB frames and optical flow graphs as the input of the scSE module.The features processed by scSE were inputted into the non-local two-stream ResNet network,and the segmentations were merged to obtain the final prediction results.The experimental accuracy on UCF101 and Hmdb51 dataset reaches 96.9%and 76.2%,respectively.The results show that the combination of non-local operation and scSE module can enhance the information of feature space-time and between the channels to improve the accuracy,which verifies the effectiveness of SC_NLResNet network.

关键词

双流卷积神经网络/scSE模块/残差网络/非局部操作/行为识别

Key words

Two-stream convolutional neural network/ScSE module/Residual neural network/Non-local operation/Action recognition

引用本文复制引用

基金项目

陕西省自然科学基础研究计划项目(2019JM-348)

陕西省自然科学基础研究计划项目(2019JLM-10)

出版年

2024
计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
参考文献量3
段落导航相关论文