计算机应用与软件2024,Vol.41Issue(9) :106-113.DOI:10.3969/j.issn.1000-386x.2024.09.016

基于自注意力机制LSTM的COVID-19感染预测

VIRUS PROPAGATION PREDICTION BASED ON LSTM-SELF-ATTENTION

吴昊 曹宇 魏海平 田壮
计算机应用与软件2024,Vol.41Issue(9) :106-113.DOI:10.3969/j.issn.1000-386x.2024.09.016

基于自注意力机制LSTM的COVID-19感染预测

VIRUS PROPAGATION PREDICTION BASED ON LSTM-SELF-ATTENTION

吴昊 1曹宇 1魏海平 1田壮1
扫码查看

作者信息

  • 1. 辽宁石油化工大学计算机与通信工程学院 辽宁抚顺 113000
  • 折叠

摘要

COVID-19因各国气候、政府政策和疫苗接种人数等因素的不同而呈现不同的发展趋势,这导致COVID-19数据不稳定,传统的机理模型无法根据历史时序数据做出准确预测.因此,提出一种在深度学习LSTM网络框架下引入Self-Attention机制的改进模型.通过仿真实验,对中国、英国和意大利的COVID-19现存病例数据进行预测,并与带有非线性传染率的SIS模型、LSTM模型和ConvLSTM模型的预测结果对比,实验证明,相比于其他三种模型,LSTM-Self-Attention模型的预测精度更高.

Abstract

COVID-19 presents different development trends due to different climate,government policies and vaccination population in different countries,which leads to the instability of COVID-19 data.The traditional mechanism model cannot make accurate prediction based on historical time series data.Therefore,this paper proposes an improved model with self-attention mechanism in the framework of deep learning LSTM network.Through simulation experiments,the existing data of COVID-19 in China,Britain and Italy were predicted,and the prediction results were compared with those of SIS model,LSTM model and ConvLSTM model with nonlinear infection rate.Experiments show that LSTM Self-Attention model has higher prediction accuracy than the other three models.

关键词

COVID-19/SIS/自注意力机制/长短期记忆网络/ConvLSTM

Key words

COVID-19/SIS/Self-Attention/LSTM/ConvLSTM

引用本文复制引用

基金项目

辽宁省教育科学"十三五"规划立项重点课题(JG18DA013)

辽宁省重点研究开发项目(2020JH2/10300040)

辽宁省教育厅资助课题(L2020031)

出版年

2024
计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
段落导航相关论文