计算机应用与软件2024,Vol.41Issue(9) :127-135.DOI:10.3969/j.issn.1000-386x.2024.09.019

一种结合包检测与流检测的SECS2流量识别方法

A SECS2 TRAFFIC IDENTIFICATION METHOD COMBINING PACKET INSPECTION AND FLOW INSPECTION

唐璇 严明 万仕贤
计算机应用与软件2024,Vol.41Issue(9) :127-135.DOI:10.3969/j.issn.1000-386x.2024.09.019

一种结合包检测与流检测的SECS2流量识别方法

A SECS2 TRAFFIC IDENTIFICATION METHOD COMBINING PACKET INSPECTION AND FLOW INSPECTION

唐璇 1严明 1万仕贤1
扫码查看

作者信息

  • 1. 复旦大学计算机科学技术学院 上海 200000
  • 折叠

摘要

要对网络数据包所采用的应用层协议进行识别,保证半导体生产环境的安全,使用传统的基于服务端口和特征字的识别方式都具有一定的局限性,无法达到所需的准确度.针对这种情况,提出一种基于HSMS(High Speed Message Services)头部信息和SECS2数据本身固定模式的识别模型,结合深度包检测、深度流检测、机器学习等技术对SECS2流量进行识别.实验结果表明,该模型能有效地识别SECS2数据包,误判率仅为0.598 8%,相比传统识别方式,误判率降低了29.469 6%.

Abstract

In order to identify the application layer protocol used in the network packet,to ensure the security of the semiconductor production environment,the traditional recognition methods based on server port and feature words have certain limitations and cannot achieve the required accuracy.In view of this situation,a recognition model based on HSMS header information and the fixed pattern of SECS2 data is proposed,which combined deep packet inspection,deep flow inspection,and machine learning to identify the SECS2 traffic.Experimental results show that this model can effectively identify SECS2 packets,and the misjudgment rate is only 0.598 8%,which is 29.469 6%lower than the traditional identification method.

关键词

SECS2/HSMS/流量识别/深度包检测/深度流检测

Key words

SECS2/HSMS/Traffic identification/Deep packet inspection/Deep-flow inspection

引用本文复制引用

基金项目

2019年工业互联网创新发展工程项目()

出版年

2024
计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
段落导航相关论文