首页|基于改进ISODATA聚类的Wi-Fi室内定位算法

基于改进ISODATA聚类的Wi-Fi室内定位算法

扫码查看
为解决传统聚类算法在Wi-Fi室内定位中易陷入局部最优影响定位精度的问题,提出一种改进迭代自组织数据分析聚类Wi-Fi室内定位算法。离线阶段通过计算指纹数据库中各点欧氏距离标准差,优化初始参数阈值,动态选择聚类中心,减少定位误差;在线阶段将自适应加权K近邻与聚类算法结合,避免固定K值对定位结果影响,有效提高定位精度;将改进算法用于工程实例进行验证。结果表明,提出的算法在定位精度1 m范围内时概率为63。33%,定位精度2 m范围内时概率为90。00%,验证了该算法的有效性。
WI-FI INDOOR LOCATION ALGORITHM BASED ON IMPROVED ISODATA CLUSTERING
In order to solve the problem that the traditional clustering algorithm is easy to fall into the local optimum and affect the positioning accuracy,an improved iterative self-organizing data analysis clustering algorithm for indoor positioning of Wi-Fi is proposed.In the offline stage,the Euclidean distance standard deviation of each point in the fingerprint database was calculated,the initial parameter threshold was optimized,and the clustering center was dynamically selected to reduce the location error.In the online stage,the adaptive weighted K-nearest neighbor algorithm was combined with the clustering algorithm to avoid the influence of fixed K value on the positioning results and effectively improve the positioning accuracy.The improved algorithm was applied to an engineering example for verification.The results show that the proposed algorithm has a probability of 63.33%when the positioning accuracy is within 1 m and a probability of 90.00%when the positioning accuracy is within 2 m,which verifies the effectiveness of the proposed algorithm.

Indoor positioningIterative self-organizing data analysisFingerprint databaseAdaptive weighted K-nearest neighbor

曹祥红、童硕、杜薇

展开 >

郑州轻工业大学建筑环境工程学院 河南郑州 450000

河南省智慧建筑与人居环境工程技术研究中心 河南郑州 450000

室内定位 迭代自组织数据分析 指纹数据库 自适应加权K近邻

河南省重点研发与推广专项

212102210020

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(9)